Ensemble learning of diffractive optical networks
- URL: http://arxiv.org/abs/2009.06869v1
- Date: Tue, 15 Sep 2020 05:02:50 GMT
- Title: Ensemble learning of diffractive optical networks
- Authors: Md Sadman Sakib Rahman, Jingxi Li, Deniz Mengu, Yair Rivenson and
Aydogan Ozcan
- Abstract summary: We numerically demonstrated that ensembles of N=14 and N=30 D2NNs achieve blind testing accuracies of 61.14% and 62.13%, respectively, on the classification of CIFAR-10 test images.
These results constitute the highest inference accuracies achieved to date by any diffractive optical neural network design on the same dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A plethora of research advances have emerged in the fields of optics and
photonics that benefit from harnessing the power of machine learning.
Specifically, there has been a revival of interest in optical computing
hardware, due to its potential advantages for machine learning tasks in terms
of parallelization, power efficiency and computation speed. Diffractive Deep
Neural Networks (D2NNs) form such an optical computing framework, which
benefits from deep learning-based design of successive diffractive layers to
all-optically process information as the input light diffracts through these
passive layers. D2NNs have demonstrated success in various tasks, including
e.g., object classification, spectral-encoding of information, optical pulse
shaping and imaging, among others. Here, we significantly improve the inference
performance of diffractive optical networks using feature engineering and
ensemble learning. After independently training a total of 1252 D2NNs that were
diversely engineered with a variety of passive input filters, we applied a
pruning algorithm to select an optimized ensemble of D2NNs that collectively
improve their image classification accuracy. Through this pruning, we
numerically demonstrated that ensembles of N=14 and N=30 D2NNs achieve blind
testing accuracies of 61.14% and 62.13%, respectively, on the classification of
CIFAR-10 test images, providing an inference improvement of >16% compared to
the average performance of the individual D2NNs within each ensemble. These
results constitute the highest inference accuracies achieved to date by any
diffractive optical neural network design on the same dataset and might provide
a significant leapfrog to extend the application space of diffractive optical
image classification and machine vision systems.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Classification robustness to common optical aberrations [64.08840063305313]
This paper proposes OpticsBench, a benchmark for investigating robustness to realistic, practically relevant optical blur effects.
Experiments on ImageNet show that for a variety of different pre-trained DNNs, the performance varies strongly compared to disk-shaped kernels.
We show on ImageNet-100 with OpticsAugment that can be increased by using optical kernels as data augmentation.
arXiv Detail & Related papers (2023-08-29T08:36:00Z) - Sophisticated deep learning with on-chip optical diffractive tensor
processing [5.081061839052458]
Photonic integrated circuits provide an efficient approach to mitigate bandwidth limitations and power-wall brought by electronic counterparts.
We propose an optical computing architecture enabled by on-chip diffraction to implement convolutional acceleration, termed optical convolution unit (OCU)
With OCU as the fundamental unit, we build an optical convolutional neural network (oCNN) to implement two popular deep learning tasks: classification and regression.
arXiv Detail & Related papers (2022-12-20T03:33:26Z) - Time-lapse image classification using a diffractive neural network [0.0]
We show for the first time a time-lapse image classification scheme using a diffractive network.
We show a blind testing accuracy of 62.03% on the optical classification of objects from the CIFAR-10 dataset.
This constitutes the highest inference accuracy achieved so far using a single diffractive network.
arXiv Detail & Related papers (2022-08-23T08:16:30Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - An optical neural network using less than 1 photon per multiplication [4.003843776219224]
We experimentally demonstrate an optical neural network achieving 99% accuracy on handwritten-digit classification.
This performance was achieved using a custom free-space optical processor.
Our results provide a proof-of-principle for low-optical-power operation.
arXiv Detail & Related papers (2021-04-27T20:43:23Z) - Scale-, shift- and rotation-invariant diffractive optical networks [0.0]
Diffractive Deep Neural Networks (D2NNs) harness light-matter interaction over a series of trainable surfaces to compute a desired statistical inference task.
Here, we demonstrate a new training strategy for diffractive networks that introduces input object translation, rotation and/or scaling during the training phase.
This training strategy successfully guides the evolution of the diffractive optical network design towards a solution that is scale-, shift- and rotation-invariant.
arXiv Detail & Related papers (2020-10-24T02:18:39Z) - Misalignment Resilient Diffractive Optical Networks [14.520023891142698]
We introduce and experimentally demonstrate a new training scheme that significantly increases the robustness of diffractive networks against 3D misalignments and fabrication tolerances.
By modeling the undesired layer-to-layer misalignments in 3D as continuous random variables in the optical forward model, diffractive networks are trained to maintain their inference accuracy over a large range of misalignments.
arXiv Detail & Related papers (2020-05-23T04:22:48Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.