Multimodal Joint Attribute Prediction and Value Extraction for
E-commerce Product
- URL: http://arxiv.org/abs/2009.07162v1
- Date: Tue, 15 Sep 2020 15:10:51 GMT
- Title: Multimodal Joint Attribute Prediction and Value Extraction for
E-commerce Product
- Authors: Tiangang Zhu, Yue Wang, Haoran Li, Youzheng Wu, Xiaodong He and Bowen
Zhou
- Abstract summary: Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval.
While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications.
We propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images.
- Score: 40.46223408546036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Product attribute values are essential in many e-commerce scenarios, such as
customer service robots, product recommendations, and product retrieval. While
in the real world, the attribute values of a product are usually incomplete and
vary over time, which greatly hinders the practical applications. In this
paper, we propose a multimodal method to jointly predict product attributes and
extract values from textual product descriptions with the help of the product
images. We argue that product attributes and values are highly correlated,
e.g., it will be easier to extract the values on condition that the product
attributes are given. Thus, we jointly model the attribute prediction and value
extraction tasks from multiple aspects towards the interactions between
attributes and values. Moreover, product images have distinct effects on our
tasks for different product attributes and values. Thus, we selectively draw
useful visual information from product images to enhance our model. We annotate
a multimodal product attribute value dataset that contains 87,194 instances,
and the experimental results on this dataset demonstrate that explicitly
modeling the relationship between attributes and values facilitates our method
to establish the correspondence between them, and selectively utilizing visual
product information is necessary for the task. Our code and dataset will be
released to the public.
Related papers
- PAE: LLM-based Product Attribute Extraction for E-Commerce Fashion Trends [0.6445605125467574]
This paper presents PAE, a product attribute extraction algorithm for future trend reports consisting text and images in PDF format.
Our contributions are three-fold: (a) We develop PAE, an efficient framework to extract attributes from unstructured data (text and images); (b) We provide catalog matching methodology based on BERT representations to discover the existing attributes using upcoming attribute values; (c) We conduct extensive experiments with several baselines and show that PAE is an effective, flexible and on par or superior (avg 92.5% F1-Score) framework to existing state-of-the-art for attribute value extraction
arXiv Detail & Related papers (2024-05-27T17:50:25Z) - EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM [52.016009472409166]
EIVEN is a data- and parameter-efficient generative framework for implicit attribute value extraction.
We introduce a novel Learning-by-Comparison technique to reduce model confusion.
Our experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values.
arXiv Detail & Related papers (2024-04-13T03:15:56Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
We propose a pioneering framework that integrates BERT for classification, a Conditional Random Fields (CRFs) layer for attribute value extraction, and Large Language Models (LLMs) for data annotation.
Our approach capitalizes on the robust representation learning of BERT, synergized with the sequence decoding prowess of CRFs, to adeptly identify and extract attribute values.
Our methodology is rigorously validated on various datasets, including Walmart, BestBuy's e-commerce NER dataset, and the CoNLL dataset.
arXiv Detail & Related papers (2023-12-09T08:26:30Z) - AE-smnsMLC: Multi-Label Classification with Semantic Matching and
Negative Label Sampling for Product Attribute Value Extraction [42.79022954630978]
Product attribute value extraction plays an important role for many real-world applications in e-Commerce such as product search and recommendation.
Previous methods treat it as a sequence labeling task that needs more annotation for position of values in the product text.
We propose a classification model with semantic matching and negative label sampling for attribute value extraction.
arXiv Detail & Related papers (2023-10-11T02:22:28Z) - MMAPS: End-to-End Multi-Grained Multi-Modal Attribute-Aware Product
Summarization [93.5217515566437]
Multi-modal Product Summarization (MPS) aims to increase customers' desire to purchase by highlighting product characteristics.
Existing MPS methods can produce promising results, but they still lack end-to-end product summarization.
We propose an end-to-end multi-modal attribute-aware product summarization method (MMAPS) for generating high-quality product summaries in e-commerce.
arXiv Detail & Related papers (2023-08-22T11:00:09Z) - Product Information Extraction using ChatGPT [69.12244027050454]
This paper explores the potential of ChatGPT for extracting attribute/value pairs from product descriptions.
Our results show that ChatGPT achieves a performance similar to a pre-trained language model but requires much smaller amounts of training data and computation for fine-tuning.
arXiv Detail & Related papers (2023-06-23T09:30:01Z) - OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak
Supervision [93.26737878221073]
We study the attribute mining problem in an open-world setting to extract novel attributes and their values.
We propose a principled framework that first generates attribute value candidates and then groups them into clusters of attributes.
Our model significantly outperforms strong baselines and can generalize to unseen attributes and product types.
arXiv Detail & Related papers (2022-04-29T04:16:04Z) - MAVE: A Product Dataset for Multi-source Attribute Value Extraction [10.429320377835241]
We introduce MAVE, a new dataset to better facilitate research on product attribute value extraction.
MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories.
We propose a novel approach that effectively extracts the attribute value from the multi-source product information.
arXiv Detail & Related papers (2021-12-16T06:48:31Z) - PAM: Understanding Product Images in Cross Product Category Attribute
Extraction [40.332066960433245]
This work proposes a more inclusive framework that fully utilizes different modalities for attribute extraction.
Inspired by recent works in visual question answering, we use a transformer based sequence to sequence model to fuse representations of product text, Optical Character Recognition (OCR) tokens and visual objects detected in the product image.
The framework is further extended with the capability to extract attribute value across multiple product categories with a single model.
arXiv Detail & Related papers (2021-06-08T18:30:17Z) - AdaTag: Multi-Attribute Value Extraction from Product Profiles with
Adaptive Decoding [55.89773725577615]
We present AdaTag, which uses adaptive decoding to handle attribute extraction.
Our experiments on a real-world e-Commerce dataset show marked improvements over previous methods.
arXiv Detail & Related papers (2021-06-04T07:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.