Interpolating Log-Determinant and Trace of the Powers of Matrix
$\mathbf{A} + t \mathbf{B}$
- URL: http://arxiv.org/abs/2009.07385v3
- Date: Wed, 3 Aug 2022 20:21:59 GMT
- Title: Interpolating Log-Determinant and Trace of the Powers of Matrix
$\mathbf{A} + t \mathbf{B}$
- Authors: Siavash Ameli, Shawn C. Shadden
- Abstract summary: We develop methods for the functions $t mapsto log det left( mathbfA + t mathbfB right)$ and $t mapsto nametraceleft (mathbfA + t mathbfB)p right)$ where the matrices $mathbfA$ and $mathbfB$ are Hermitian and positive (semi) definite and $p$ and $t$ are real variables.
- Score: 1.5002438468152661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop heuristic interpolation methods for the functions $t \mapsto \log
\det \left( \mathbf{A} + t \mathbf{B} \right)$ and $t \mapsto
\operatorname{trace}\left( (\mathbf{A} + t \mathbf{B})^{p} \right)$ where the
matrices $\mathbf{A}$ and $\mathbf{B}$ are Hermitian and positive (semi)
definite and $p$ and $t$ are real variables. These functions are featured in
many applications in statistics, machine learning, and computational physics.
The presented interpolation functions are based on the modification of sharp
bounds for these functions. We demonstrate the accuracy and performance of the
proposed method with numerical examples, namely, the marginal maximum
likelihood estimation for Gaussian process regression and the estimation of the
regularization parameter of ridge regression with the generalized
cross-validation method.
Related papers
- Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Optimal Estimator for Linear Regression with Shuffled Labels [17.99906229036223]
This paper considers the task of linear regression with shuffled labels.
$mathbf Y in mathbb Rntimes m, mathbf Pi in mathbb Rntimes p, mathbf B in mathbb Rptimes m$, and $mathbf Win mathbb Rntimes m$, respectively.
arXiv Detail & Related papers (2023-10-02T16:44:47Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Local approximation of operators [0.0]
We study the problem of determining the degree of approximation of a non-linear operator between metric spaces $mathfrakX$ and $mathfrakY$.
We establish constructive methods to do this efficiently, i.e., with the constants involved in the estimates on the approximation on $mathbbSd$ being $mathcalO(d1/6)$.
arXiv Detail & Related papers (2022-02-13T19:28:34Z) - Metric Hypertransformers are Universal Adapted Maps [4.83420384410068]
metric hypertransformers (MHTs) are capable of approxing any adapted map $F:mathscrXmathbbZrightarrow mathscrYmathbbZ$ with approximable complexity.
Our results provide the first (quantimat) universal approximation theorem compatible with any such $mathscrX$ and $mathscrY$.
arXiv Detail & Related papers (2022-01-31T10:03:46Z) - Random matrices in service of ML footprint: ternary random features with
no performance loss [55.30329197651178]
We show that the eigenspectrum of $bf K$ is independent of the distribution of the i.i.d. entries of $bf w$.
We propose a novel random technique, called Ternary Random Feature (TRF)
The computation of the proposed random features requires no multiplication and a factor of $b$ less bits for storage compared to classical random features.
arXiv Detail & Related papers (2021-10-05T09:33:49Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Feature Cross Search via Submodular Optimization [58.15569071608769]
We study feature cross search as a fundamental primitive in feature engineering.
We show that there exists a simple greedy $(1-1/e)$-approximation algorithm for this problem.
arXiv Detail & Related papers (2021-07-05T16:58:31Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - Nonparametric Learning of Two-Layer ReLU Residual Units [22.870658194212744]
We describe an algorithm that learns two-layer residual units with rectified linear unit (ReLU) activation.
We design layer-wise objectives as functionals whose analytic minimizers express the exact ground-truth network in terms of its parameters and nonlinearities.
We prove the statistical strong consistency of our algorithm, and demonstrate the robustness and sample efficiency of our algorithm by experiments.
arXiv Detail & Related papers (2020-08-17T22:11:26Z) - Variational Orthogonal Features [29.636483122130027]
We show that for certain priors, features can be defined that remove the $mathcalO(M3)$ cost of computing a minibatch estimate of an evidence lower bound (ELBO)
We present a construction of features for any stationary prior kernel that allow for computation of an unbiased estimator to the ELBO using $T$ Monte Carlo samples in $mathcalO(tildeNT+M2T)$ and in $mathcalO(tildeNT+MT)$ with an additional approximation.
arXiv Detail & Related papers (2020-06-23T17:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.