Face Mask Detection using Transfer Learning of InceptionV3
- URL: http://arxiv.org/abs/2009.08369v2
- Date: Tue, 20 Oct 2020 19:04:26 GMT
- Title: Face Mask Detection using Transfer Learning of InceptionV3
- Authors: G. Jignesh Chowdary, Narinder Singh Punn, Sanjay Kumar Sonbhadra,
Sonali Agarwal
- Abstract summary: The most effective preventive measure against COVID-19 is wearing a mask in public places and crowded areas.
It is very difficult to monitor people manually in these areas.
In this paper, a transfer learning model is proposed to automate the process of identifying the people who are not wearing mask.
- Score: 3.6016022712620095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The world is facing a huge health crisis due to the rapid transmission of
coronavirus (COVID-19). Several guidelines were issued by the World Health
Organization (WHO) for protection against the spread of coronavirus. According
to WHO, the most effective preventive measure against COVID-19 is wearing a
mask in public places and crowded areas. It is very difficult to monitor people
manually in these areas. In this paper, a transfer learning model is proposed
to automate the process of identifying the people who are not wearing mask. The
proposed model is built by fine-tuning the pre-trained state-of-the-art deep
learning model, InceptionV3. The proposed model is trained and tested on the
Simulated Masked Face Dataset (SMFD). Image augmentation technique is adopted
to address the limited availability of data for better training and testing of
the model. The model outperformed the other recently proposed approaches by
achieving an accuracy of 99.9% during training and 100% during testing.
Related papers
- A transfer learning approach with convolutional neural network for Face
Mask Detection [0.30693357740321775]
We propose a mask recognition system based on transfer learning and Inception v3 architecture.
In addition to masked and unmasked faces, it can also detect cases of incorrect use of mask.
arXiv Detail & Related papers (2023-10-29T07:38:33Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - A Comparative Analysis of Machine Learning Approaches for Automated Face
Mask Detection During COVID-19 [0.0]
WHO recommends wearing face masks as one of the most effective measures to prevent COVID-19 transmission.
We explore a number of deep learning models for face-mask detection and evaluate them on two benchmark datasets.
We find that while the performances of all the models are quite good, transfer learning models achieve the best performance.
arXiv Detail & Related papers (2021-12-15T06:30:50Z) - Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models [66.07662074148142]
We propose a physical adversarial universal perturbation (UAP) against state-of-the-art deep learning-based facial recognition models.
In our experiments, we examined the transferability of our adversarial mask to a wide range of deep learning models and datasets.
We validated our adversarial mask effectiveness in real-world experiments by printing the adversarial pattern on a fabric medical face mask.
arXiv Detail & Related papers (2021-11-21T08:13:21Z) - A Deep Learning-based Approach for Real-time Facemask Detection [0.0]
The COVID-19 pandemic is causing a global health crisis. Public spaces need to be safeguarded from the adverse effects of this pandemic.
Wearing a facemask becomes one of the effective protection solutions adopted by many governments.
The goal of this paper is to use deep learning (DL), which has shown excellent results in many real-life applications, to ensure efficient real-time facemask detection.
arXiv Detail & Related papers (2021-10-17T06:12:02Z) - TransRPPG: Remote Photoplethysmography Transformer for 3D Mask Face
Presentation Attack Detection [53.98866801690342]
3D mask face presentation attack detection (PAD) plays a vital role in securing face recognition systems from 3D mask attacks.
We propose a pure r transformer (TransR) framework for learning live intrinsicness representation efficiently.
Our TransR is lightweight and efficient (with only 547K parameters and 763MOPs) which is promising for mobile-level applications.
arXiv Detail & Related papers (2021-04-15T12:33:13Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - A Computer Vision System to Help Prevent the Transmission of COVID-19 [79.62140902232628]
The COVID-19 pandemic affects every area of daily life globally.
Health organizations advise social distancing, wearing face mask, and avoiding touching face.
We developed a deep learning-based computer vision system to help prevent the transmission of COVID-19.
arXiv Detail & Related papers (2021-03-16T00:00:04Z) - RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control
of the COVID-19 Pandemic [1.2691047660244335]
One effective strategy to prevent infection for people is to wear masks in public places.
Certain public service providers require clients to use their services only if they properly wear masks.
There are, however, only a few research studies on automatic face mask detection.
We proposed RetinaFaceMask, the first high-performance single stage face mask detector.
arXiv Detail & Related papers (2020-05-08T10:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.