BargainNet: Background-Guided Domain Translation for Image Harmonization
- URL: http://arxiv.org/abs/2009.09169v2
- Date: Sat, 3 Apr 2021 14:56:09 GMT
- Title: BargainNet: Background-Guided Domain Translation for Image Harmonization
- Authors: Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, Liqing Zhang
- Abstract summary: Unharmonious foreground and background downgrade the quality of composite image.
Image harmonization, which adjusts the foreground to improve the consistency, is an essential yet challenging task.
We propose an image harmonization network with a novel domain code extractor and well-tailored triplet losses.
- Score: 26.370523451625466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image composition is a fundamental operation in image editing field. However,
unharmonious foreground and background downgrade the quality of composite
image. Image harmonization, which adjusts the foreground to improve the
consistency, is an essential yet challenging task. Previous deep learning based
methods mainly focus on directly learning the mapping from composite image to
real image, while ignoring the crucial guidance role that background plays. In
this work, with the assumption that the foreground needs to be translated to
the same domain as background, we formulate image harmonization task as
background-guided domain translation. Therefore, we propose an image
harmonization network with a novel domain code extractor and well-tailored
triplet losses, which could capture the background domain information to guide
the foreground harmonization. Extensive experiments on the existing image
harmonization benchmark demonstrate the effectiveness of our proposed method.
Code is available at https://github.com/bcmi/BargainNet.
Related papers
- Segment Anything Model Meets Image Harmonization [13.415810438244788]
Image harmonization is a crucial technique in image composition that aims to seamlessly match the background by adjusting the foreground of composite images.
Current methods adopt either global-level or pixel-level feature matching.
We propose Semantic-guided Region-aware Instance Normalization (SRIN) that can utilize the semantic segmentation maps output by a pre-trained Segment Anything Model (SAM) to guide the visual consistency learning of foreground and background features.
arXiv Detail & Related papers (2023-12-20T02:57:21Z) - Intrinsic Harmonization for Illumination-Aware Compositing [0.7366405857677227]
We introduce a self-supervised illumination harmonization approach formulated in the intrinsic image domain.
First, we estimate a simple global lighting model from mid-level vision representations to generate a rough shading for the foreground region.
A network then refines this inferred shading to generate a re-shading that aligns with the background scene.
arXiv Detail & Related papers (2023-12-06T18:59:03Z) - Painterly Image Harmonization via Adversarial Residual Learning [37.78751164466694]
painterly image aims to transfer the style of background painting to the foreground object.
In this work, we employ adversarial learning to bridge the domain gap between foreground feature map and background feature map.
arXiv Detail & Related papers (2023-11-15T01:53:46Z) - Image Harmonization with Region-wise Contrastive Learning [51.309905690367835]
We propose a novel image harmonization framework with external style fusion and region-wise contrastive learning scheme.
Our method attempts to bring together corresponding positive and negative samples by maximizing the mutual information between the foreground and background styles.
arXiv Detail & Related papers (2022-05-27T15:46:55Z) - SSH: A Self-Supervised Framework for Image Harmonization [97.16345684998788]
We propose a novel Self-Supervised Harmonization framework (SSH) that can be trained using just "free" natural images without being edited.
Our results show that the proposedSSH outperforms previous state-of-the-art methods in terms of reference metrics, visual quality, and subject user study.
arXiv Detail & Related papers (2021-08-15T19:51:33Z) - Region-aware Adaptive Instance Normalization for Image Harmonization [14.77918186672189]
To acquire photo-realistic composite images, one must adjust the appearance and visual style of the foreground to be compatible with the background.
Existing deep learning methods for harmonizing composite images directly learn an image mapping network from the composite to the real one.
We propose a Region-aware Adaptive Instance Normalization (RAIN) module, which explicitly formulates the visual style from the background and adaptively applies them to the foreground.
arXiv Detail & Related papers (2021-06-05T09:57:17Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z) - Adversarial Image Composition with Auxiliary Illumination [53.89445873577062]
We propose an Adversarial Image Composition Net (AIC-Net) that achieves realistic image composition.
A novel branched generation mechanism is proposed, which disentangles the generation of shadows and the transfer of foreground styles.
Experiments on pedestrian and car composition tasks show that the proposed AIC-Net achieves superior composition performance.
arXiv Detail & Related papers (2020-09-17T12:58:16Z) - Domain Adaptation for Image Dehazing [72.15994735131835]
Most existing methods train a dehazing model on synthetic hazy images, which are less able to generalize well to real hazy images due to domain shift.
We propose a domain adaptation paradigm, which consists of an image translation module and two image dehazing modules.
Experimental results on both synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms.
arXiv Detail & Related papers (2020-05-10T13:54:56Z) - BachGAN: High-Resolution Image Synthesis from Salient Object Layout [78.51640906030244]
We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout.
Two main challenges spring from this new task: (i) how to generate fine-grained details and realistic textures without segmentation map input; and (ii) how to create a background and weave it seamlessly into standalone objects.
By generating the hallucinated background representation dynamically, our model can synthesize high-resolution images with both photo-realistic foreground and integral background.
arXiv Detail & Related papers (2020-03-26T00:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.