Understanding the Spatio-temporal Topic Dynamics of Covid-19 using
Nonnegative Tensor Factorization: A Case Study
- URL: http://arxiv.org/abs/2009.09253v1
- Date: Sat, 19 Sep 2020 15:16:28 GMT
- Title: Understanding the Spatio-temporal Topic Dynamics of Covid-19 using
Nonnegative Tensor Factorization: A Case Study
- Authors: Thirunavukarasu Balasubramaniam, Richi Nayak, Md Abul Bashar
- Abstract summary: This paper proposes a representation of social media data and Non-negative Factorization (NTF) to identify the topics discussed in social media data.
A case study on the Australia Twittersphere is presented to identify visualize the topic dynamics on and off the Covid-19.
- Score: 1.6328866317851185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms facilitate mankind a data-driven world by enabling
billions of people to share their thoughts and activities ubiquitously. This
huge collection of data, if analysed properly, can provide useful insights into
people's behavior. More than ever, now is a crucial time under the Covid-19
pandemic to understand people's online behaviors detailing what topics are
being discussed, and where (space) and when (time) they are discussed. Given
the high complexity and poor quality of the huge social media data, an
effective spatio-temporal topic detection method is needed. This paper proposes
a tensor-based representation of social media data and Non-negative Tensor
Factorization (NTF) to identify the topics discussed in social media data along
with the spatio-temporal topic dynamics. A case study on Covid-19 related
tweets from the Australia Twittersphere is presented to identify and visualize
spatio-temporal topic dynamics on Covid-19
Related papers
- Exploring a Hybrid Deep Learning Framework to Automatically Discover
Topic and Sentiment in COVID-19 Tweets [2.3940819037450987]
COVID-19 has created a major public health problem worldwide and other problems such as economic crisis, unemployment, mental distress, etc.
The pandemic is deadly in the world and involves many people not only with infection but also with problems, stress, wonder, fear, resentment, and hatred.
Twitter is a highly influential social media platform and a significant source of health-related information, news, opinion and public sentiment.
arXiv Detail & Related papers (2023-12-02T16:58:17Z) - Cross-Platform Social Dynamics: An Analysis of ChatGPT and COVID-19
Vaccine Conversations [37.69303106863453]
We analyzed over 12 million posts and news articles related to two significant events: the release of ChatGPT in 2022 and the global discussions about COVID-19 vaccines in 2021.
Data was collected from multiple platforms, including Twitter, Facebook, Instagram, Reddit, YouTube, and GDELT.
We employed topic modeling techniques to uncover the distinct thematic emphases on each platform, which reflect their specific features and target audiences.
arXiv Detail & Related papers (2023-10-17T09:58:55Z) - NewsDialogues: Towards Proactive News Grounded Conversation [72.10055780635625]
We propose a novel task, Proactive News Grounded Conversation, in which a dialogue system can proactively lead the conversation based on some key topics of the news.
To further develop this novel task, we collect a human-to-human Chinese dialogue dataset tsNewsDialogues, which includes 1K conversations with a total of 14.6K utterances.
arXiv Detail & Related papers (2023-08-12T08:33:42Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona might have upon seeing a news message.
The proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response.
This enables more accurate and comprehensive inference on the mental state of the persona.
arXiv Detail & Related papers (2023-05-25T21:01:00Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
We present a novel task, identifying manipulation of news on social media, which aims to detect manipulation in social media posts and identify manipulated or inserted information.
To study this task, we have proposed a data collection schema and curated a dataset called ManiTweet, consisting of 3.6K pairs of tweets and corresponding articles.
Our analysis demonstrates that this task is highly challenging, with large language models (LLMs) yielding unsatisfactory performance.
arXiv Detail & Related papers (2023-05-23T16:40:07Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - A Dynamic Topic Identification and Labeling Approach of COVID-19 Tweets [3.097385298197292]
The COVID-19 epidemic has affected the use of social media by many people across the globe.
This paper formulates the problem of dynamically identifying key topics with proper labels from COVID-19 Tweets to provide an overview of wider public opinion.
arXiv Detail & Related papers (2021-08-13T16:51:04Z) - COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal
Understanding of the Pandemic with Social Media Conversations [4.07452542897703]
Social media platforms have served as a vehicle for the global conversation about COVID-19.
We present a framework for analysis, mining, and tracking the critical content and characteristics of social media conversations around the pandemic.
arXiv Detail & Related papers (2021-04-22T00:45:50Z) - Topic, Sentiment and Impact Analysis: COVID19 Information Seeking on
Social Media [1.6328866317851185]
This study analysed a large Spatio-temporal tweet dataset of the Australian sphere related to COVID19.
The methodology included a volume analysis, dynamic topic modelling, sentiment detection, and semantic brand score.
The obtained insights are compared with independently observed phenomena such as government reported instances.
arXiv Detail & Related papers (2020-08-28T02:03:18Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z) - A Study of Knowledge Sharing related to Covid-19 Pandemic in Stack
Overflow [69.5231754305538]
Study of 464 Stack Overflow questions posted mainly in February and March 2020 and leveraging the power of text mining.
Findings reveal that indeed this global crisis sparked off an intense and increasing activity in Stack Overflow with most post topics reflecting a strong interest on the analysis of Covid-19 data.
arXiv Detail & Related papers (2020-04-18T08:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.