Thermal Properties of Deng-Fan-Eckart Potential model using Poisson
Summation Approach
- URL: http://arxiv.org/abs/2009.09292v1
- Date: Sat, 19 Sep 2020 20:15:06 GMT
- Title: Thermal Properties of Deng-Fan-Eckart Potential model using Poisson
Summation Approach
- Authors: C.O.Edet, U.S.Okorie, G.Osobonye, A.N.Ikot, G.J.Rampho and R.Sever
- Abstract summary: The Deng-Fan-Eckart potential is as good as the Morse potential in studying atomic interaction in diatomic molecules.
The thermodynamic properties of some selected diatomic molecules(H2, CO, and ScN ) were obtained using Poisson summation method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Deng-Fan-Eckart (DFE) potential is as good as the Morse potential in
studying atomic interaction in diatomic molecules. By using the improved
Pekeris-type approximation, to deal with the centrifugal term, we obtain the
bound-state solutions of the radial Schr\"odinger equation with this adopted
molecular model via the Factorization Method. With the energy equation
obtained, the thermodynamic properties of some selected diatomic molecules(H2 ,
CO , and ScN ) were obtained using Poisson summation method.. The unnormalized
wave function is also derived. The energy spectrum for a set of diatomic
molecules for different values of the vibrational n and rotational l are
obtained. To show the accuracy of our results, we discuss some special cases by
adjusting some potential parameters and also compute the numerical eigenvalue
of the Deng-Fan potential for comparison sake. However, it was found out that
our results agree excellently with the results obtained via other methods.
Related papers
- Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Eigen Solution and Thermodynamic Properties of Manning Rosen Plus
Exponential Yukawa Potential [0.0]
We obtained analytical bound state solution of the Schr"odinger equation with Manning Rosen plus Yukawa Potential.
The energy eigen equation was determined and presented in compact form.
arXiv Detail & Related papers (2023-03-21T11:56:32Z) - Real-time equation-of-motion CC cumulant and CC Green's function
simulations of photoemission spectra of water and water dimer [54.44073730234714]
We discuss results obtained with the real-time equation-of-motion CC cumulant approach.
We compare the ionization potentials obtained with these methods for the valence region.
We analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods.
arXiv Detail & Related papers (2022-05-27T18:16:30Z) - The Generalized Fractional NU Method for the Diatomic Molecules in the
Deng-Fan Model [0.0]
A solution of the fractional N-dimensional radial Schrodinger equation with the Deng-Fan potential is investigated.
The analytical formulas of energy eigenvalues and corresponding eigen functions for the Deng-Fan potential are generated.
arXiv Detail & Related papers (2022-03-05T16:05:15Z) - Eigensolutions and Thermodynamic Properties of Kratzer plus generalized
Morse Potential [0.0]
We apply the parametric Nikiforov-Uvarov method to obtain the bound state solution of Schrodinger wave equation in the presence of Kratzer plus generalized Morse potential (KPGM)
The resulting energy eigen equation were use to study partition function and other thermodynamic properties such as vibrational mean energy, vibrational specific heat capacity, vibrational mean free energy and vibrational entropy for the proposed potential as applied to lithium hydride diatomic molecule.
arXiv Detail & Related papers (2022-02-19T18:51:32Z) - Approximate Solutions, Thermal Properties and Superstatistics Solutions
to Schr\"odinger Equation [0.0]
We study thermal properties and superstatistics in terms of partition function (Z) and other thermodynamic properties.
The proposed potential model reduces to Hellmann potential, Yukawa potential, Screened Hyperbolic potential and Coulomb potential as special cases.
arXiv Detail & Related papers (2021-10-16T22:02:50Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - New Generalized Morse-Like Potential for Studying the Atomic Interaction
in Diatomic Molecules [0.0]
We obtain the approximate analytical solutions of the radial Schrodinger equation for the New Generalized Morse-Like Potential in arbitrary dimensions.
The rotational-vibrational energy eigenvalues for some diatomic molecules are computed with the aid of some spectroscopic parameters.
arXiv Detail & Related papers (2020-12-04T13:41:12Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.