DiffWave: A Versatile Diffusion Model for Audio Synthesis
- URL: http://arxiv.org/abs/2009.09761v3
- Date: Tue, 30 Mar 2021 19:48:38 GMT
- Title: DiffWave: A Versatile Diffusion Model for Audio Synthesis
- Authors: Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, Bryan Catanzaro
- Abstract summary: DiffWave is a versatile diffusion probabilistic model for conditional and unconditional waveform generation.
It produces high-fidelity audios in different waveform generation tasks, including neural vocoding conditioned on mel spectrogram.
It significantly outperforms autoregressive and GAN-based waveform models in the challenging unconditional generation task.
- Score: 35.406438835268816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose DiffWave, a versatile diffusion probabilistic model
for conditional and unconditional waveform generation. The model is
non-autoregressive, and converts the white noise signal into structured
waveform through a Markov chain with a constant number of steps at synthesis.
It is efficiently trained by optimizing a variant of variational bound on the
data likelihood. DiffWave produces high-fidelity audios in different waveform
generation tasks, including neural vocoding conditioned on mel spectrogram,
class-conditional generation, and unconditional generation. We demonstrate that
DiffWave matches a strong WaveNet vocoder in terms of speech quality (MOS: 4.44
versus 4.43), while synthesizing orders of magnitude faster. In particular, it
significantly outperforms autoregressive and GAN-based waveform models in the
challenging unconditional generation task in terms of audio quality and sample
diversity from various automatic and human evaluations.
Related papers
- Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization [37.35829410807451]
This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization.
It only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics.
By scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance.
arXiv Detail & Related papers (2024-08-15T08:34:00Z) - SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and
Music Synthesis [0.0]
We introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN.
We show the merits of our proposed model for speech and music synthesis on several datasets.
arXiv Detail & Related papers (2024-01-30T09:17:57Z) - DiffAR: Denoising Diffusion Autoregressive Model for Raw Speech Waveform
Generation [25.968115316199246]
This work proposes a diffusion probabilistic end-to-end model for generating a raw speech waveform.
Our model is autoregressive, generating overlapping frames sequentially, where each frame is conditioned on a portion of the previously generated one.
Experiments show that the proposed model generates speech with superior quality compared with other state-of-the-art neural speech generation systems.
arXiv Detail & Related papers (2023-10-02T17:42:22Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech
Synthesis [90.3069686272524]
This paper proposes FastDiff, a fast conditional diffusion model for high-quality speech synthesis.
FastDiff employs a stack of time-aware location-variable convolutions of diverse receptive field patterns to efficiently model long-term time dependencies.
Based on FastDiff, we design an end-to-end text-to-speech synthesizer, FastDiff-TTS, which generates high-fidelity speech waveforms.
arXiv Detail & Related papers (2022-04-21T07:49:09Z) - NeuralDPS: Neural Deterministic Plus Stochastic Model with Multiband
Excitation for Noise-Controllable Waveform Generation [67.96138567288197]
We propose a novel neural vocoder named NeuralDPS which can retain high speech quality and acquire high synthesis efficiency and noise controllability.
It generates waveforms at least 280 times faster than the WaveNet vocoder.
It is also 28% faster than WaveGAN's synthesis efficiency on a single core.
arXiv Detail & Related papers (2022-03-05T08:15:29Z) - RAVE: A variational autoencoder for fast and high-quality neural audio
synthesis [2.28438857884398]
We introduce a Realtime Audio Variational autoEncoder (RAVE) allowing both fast and high-quality audio waveform synthesis.
We show that our model is the first able to generate 48kHz audio signals, while simultaneously running 20 times faster than real-time on a standard laptop CPU.
arXiv Detail & Related papers (2021-11-09T09:07:30Z) - WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis [80.60577805727624]
WaveGrad 2 is a non-autoregressive generative model for text-to-speech synthesis.
It can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system.
arXiv Detail & Related papers (2021-06-17T17:09:21Z) - WaveGrad: Estimating Gradients for Waveform Generation [55.405580817560754]
WaveGrad is a conditional model for waveform generation which estimates gradients of the data density.
It starts from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned on the mel-spectrogram.
We find that it can generate high fidelity audio samples using as few as six iterations.
arXiv Detail & Related papers (2020-09-02T17:44:10Z) - VaPar Synth -- A Variational Parametric Model for Audio Synthesis [78.3405844354125]
We present VaPar Synth - a Variational Parametric Synthesizer which utilizes a conditional variational autoencoder (CVAE) trained on a suitable parametric representation.
We demonstrate our proposed model's capabilities via the reconstruction and generation of instrumental tones with flexible control over their pitch.
arXiv Detail & Related papers (2020-03-30T16:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.