Using Machine Learning to Develop a Novel COVID-19 Vulnerability Index
(C19VI)
- URL: http://arxiv.org/abs/2009.10808v1
- Date: Tue, 22 Sep 2020 20:48:19 GMT
- Title: Using Machine Learning to Develop a Novel COVID-19 Vulnerability Index
(C19VI)
- Authors: Anuj Tiwari, Arya V. Dadhania, Vijay Avin Balaji Ragunathrao, Edson R.
A. Oliveira
- Abstract summary: COVID19 is now one of the most leading causes of death in the United States.
Systemic health, social and economic disparities have put minorities and economically poor communities at a higher risk than others.
This study reports a COVID19 Vulnerability Index (C19VI) for identification and mapping of vulnerable counties in the United States.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: COVID19 is now one of the most leading causes of death in the United States.
Systemic health, social and economic disparities have put the minorities and
economically poor communities at a higher risk than others. There is an
immediate requirement to develop a reliable measure of county-level
vulnerabilities that can capture the heterogeneity of both vulnerable
communities and the COVID19 pandemic. This study reports a COVID19
Vulnerability Index (C19VI) for identification and mapping of vulnerable
counties in the United States. We proposed a Random Forest machine learning
based COVID19 vulnerability model using CDC sociodemographic and
COVID19-specific themes. An innovative COVID19 Impact Assessment algorithm was
also developed using homogeneity and trend assessment technique for evaluating
severity of the pandemic in all counties and train RF model. Developed C19VI
was statistically validated and compared with the CDC COVID19 Community
Vulnerability Index (CCVI). Finally, using C19VI along with census data, we
explored racial inequalities and economic disparities in COVID19 health
outcomes amongst different regions in the United States. Our C19VI index
indicates that 18.30% of the counties falls into very high vulnerability class,
24.34% in high, 23.32% in moderate, 22.34% in low, and 11.68% in very low.
Furthermore, C19VI reveals that 75.57% of racial minorities and 82.84% of
economically poor communities are very high or high COVID19 vulnerable regions.
The proposed approach of vulnerability modeling takes advantage of both the
well-established field of statistical analysis and the fast-evolving domain of
machine learning. C19VI provides an accurate and more reliable way to measure
county level vulnerability in the United States. This index aims at helping
emergency planners to develop more effective mitigation strategies especially
for the disproportionately impacted communities.
Related papers
- The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Factors affecting the COVID-19 risk in the US counties: an innovative
approach by combining unsupervised and supervised learning [0.0]
factors that could affect the risk of COVID-19 infection and mortality were analyzed in county level.
Results showed that mean temperature, percent of people below poverty, percent of adults with obesity, air pressure, population density, wind speed, longitude, and percent of uninsured people were the most significant attributes.
arXiv Detail & Related papers (2021-06-24T04:29:00Z) - COUnty aggRegation mixup AuGmEntation (COURAGE) COVID-19 Prediction [29.919578191688274]
This paper proposes a method named COURAGE to generate a short-term prediction of 2-week-ahead COVID-19 related deaths for each county in the United States.
Our model fully utilizes publicly available information of COVID-19 related confirmed cases, deaths, community mobility trends and demographic information, and can produce state-level prediction as an aggregation of the corresponding county-level predictions.
arXiv Detail & Related papers (2021-05-03T04:00:59Z) - The Interplay of Demographic Variables and Social Distancing Scores in
Deep Prediction of U.S. COVID-19 Cases [6.08110388949389]
We characterize the growth trajectories of counties in the United States using a novel combination of spectral clustering and the correlation matrix.
We select the demographic features that are most statistically significant in distinguishing the communities.
We effectively predict the future growth of a given county with an LSTM using three social distancing scores.
arXiv Detail & Related papers (2021-01-06T16:12:29Z) - C-Watcher: A Framework for Early Detection of High-Risk Neighborhoods
Ahead of COVID-19 Outbreak [54.39837683016444]
C-Watcher aims at screening every neighborhood in a target city and predicting infection risks, prior to the spread of COVID-19 from epicenters to the city.
C-Watcher collects large-scale long-term human mobility data from Baidu Maps, then characterizes every residential neighborhood in the city using a set of features based on urban mobility patterns.
We carried out extensive experiments on C-Watcher using the real-data records in the early stage of COVID-19 outbreaks.
arXiv Detail & Related papers (2020-12-22T17:02:54Z) - Machine learning spatio-temporal epidemiological model to evaluate
Germany-county-level COVID-19 risk [26.228330223358952]
We develop a framework with machine assisted to extract epidemic dynamics from infection data.
New toolbox is first utilized to the projection of the multi-level CO-19 prevalence over 412 Landkreis (counties) in Germany.
As a practical, we predict the situation at Christmas where the worst fatalities are 34.5 thousand, effective policies could contain it to below 21 thousand.
arXiv Detail & Related papers (2020-11-30T20:17:19Z) - COVID-19 Pandemic Outbreak in the Subcontinent: A data-driven analysis [0.8057708414390126]
COVID-19 virus emerged in late December 2019 in Wuhan city, Hubei, China.
Numerous studies claim that the subcontinent could remain in the worst affected region by the COVID-19.
This paper uses publicly available epidemiological data of Bangladesh, India, and Pakistan to estimate the reproduction numbers.
arXiv Detail & Related papers (2020-08-22T10:40:17Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.