Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19
- URL: http://arxiv.org/abs/2009.11407v2
- Date: Thu, 24 Dec 2020 04:08:35 GMT
- Title: Steering a Historical Disease Forecasting Model Under a Pandemic: Case
of Flu and COVID-19
- Authors: Alexander Rodr\'iguez, Nikhil Muralidhar, Bijaya Adhikari, Anika
Tabassum, Naren Ramakrishnan, B. Aditya Prakash
- Abstract summary: We propose CALI-Net, a neural transfer learning architecture which allows us to'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist.
Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic.
- Score: 75.99038202534628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting influenza in a timely manner aids health organizations and
policymakers in adequate preparation and decision making. However, effective
influenza forecasting still remains a challenge despite increasing research
interest. It is even more challenging amidst the COVID pandemic, when the
influenza-like illness (ILI) counts are affected by various factors such as
symptomatic similarities with COVID-19 and shift in healthcare seeking patterns
of the general population. Under the current pandemic, historical influenza
models carry valuable expertise about the disease dynamics but face
difficulties adapting. Therefore, we propose CALI-Net, a neural transfer
learning architecture which allows us to 'steer' a historical disease
forecasting model to new scenarios where flu and COVID co-exist. Our framework
enables this adaptation by automatically learning when it should emphasize
learning from COVID-related signals and when it should learn from the
historical model. Thus, we exploit representations learned from historical ILI
data as well as the limited COVID-related signals. Our experiments demonstrate
that our approach is successful in adapting a historical forecasting model to
the current pandemic. In addition, we show that success in our primary goal,
adaptation, does not sacrifice overall performance as compared with
state-of-the-art influenza forecasting approaches.
Related papers
- Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting
Epidemics [2.705025060422369]
Infectious diseases remain among the top contributors to human illness and death worldwide.
Forecasts of epidemics can assist stakeholders in tailoring countermeasures to the situation at hand.
arXiv Detail & Related papers (2022-06-21T19:31:25Z) - Forecasting new diseases in low-data settings using transfer learning [0.0]
We show how knowledge of related diseases can help make predictions of new diseases using transfer learning.
We find that transfer learning offers the potential to improve predictions, even beyond a model based on data from the target disease.
arXiv Detail & Related papers (2022-04-07T17:54:39Z) - Understanding the Spread of COVID-19 Epidemic: A Spatio-Temporal Point
Process View [44.67854875502783]
Since first coronavirus case was identified in the U.S. on Jan. 21, more than 1 million people in the U.S. have confirmed cases of COVID-19.
This infectious respiratory disease has spread rapidly across more than 3000 counties and 50 states in the U.S.
It is essential to understand the complex spacetime intertwined propagation of this disease so that accurate prediction or smart external intervention can be carried out.
arXiv Detail & Related papers (2021-06-24T15:26:46Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.