Unsupervised Transfer Learning for Spatiotemporal Predictive Networks
- URL: http://arxiv.org/abs/2009.11763v1
- Date: Thu, 24 Sep 2020 15:40:55 GMT
- Title: Unsupervised Transfer Learning for Spatiotemporal Predictive Networks
- Authors: Zhiyu Yao, Yunbo Wang, Mingsheng Long, Jianmin Wang
- Abstract summary: We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
- Score: 90.67309545798224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores a new research problem of unsupervised transfer learning
across multiple spatiotemporal prediction tasks. Unlike most existing transfer
learning methods that focus on fixing the discrepancy between supervised tasks,
we study how to transfer knowledge from a zoo of unsupervisedly learned models
towards another predictive network. Our motivation is that models from
different sources are expected to understand the complex spatiotemporal
dynamics from different perspectives, thereby effectively supplementing the new
task, even if the task has sufficient training samples. Technically, we propose
a differentiable framework named transferable memory. It adaptively distills
knowledge from a bank of memory states of multiple pretrained RNNs, and applies
it to the target network via a novel recurrent structure called the
Transferable Memory Unit (TMU). Compared with finetuning, our approach yields
significant improvements on three benchmarks for spatiotemporal prediction, and
benefits the target task even from less relevant pretext ones.
Related papers
- Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
We propose an objective derived by formulating continual learning as sequential function-space variational inference.
Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions.
We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods.
arXiv Detail & Related papers (2023-12-28T18:44:32Z) - Look-Ahead Selective Plasticity for Continual Learning of Visual Tasks [9.82510084910641]
We propose a new mechanism that takes place during task boundaries, i.e., when one task finishes and another starts.
We evaluate the proposed methods on benchmark computer vision datasets including CIFAR10 and TinyImagenet.
arXiv Detail & Related papers (2023-11-02T22:00:23Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
In this paper, we investigate the transfer performance of various types of self-supervised methods, including MoCo and SimCLR, on three downstream tasks.
We find that their performances are sub-optimal or even lag far behind the single-task baseline.
We propose a simple yet effective pretrain-adapt-finetune paradigm for general multi-task training.
arXiv Detail & Related papers (2022-09-19T12:15:31Z) - Memorizing Complementation Network for Few-Shot Class-Incremental
Learning [109.4206979528375]
We propose a Memorizing Complementation Network (MCNet) to ensemble multiple models that complements the different memorized knowledge with each other in novel tasks.
We develop a Prototype Smoothing Hard-mining Triplet (PSHT) loss to push the novel samples away from not only each other in current task but also the old distribution.
arXiv Detail & Related papers (2022-08-11T02:32:41Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification [11.96734018295146]
Self-supervised transfer learning approach ProtoTransfer outperforms state-of-the-art unsupervised meta-learning methods on few-shot tasks.
In few-shot experiments with domain shift, our approach even has comparable performance to supervised methods, but requires orders of magnitude fewer labels.
arXiv Detail & Related papers (2020-06-19T19:00:11Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z) - Anti-Transfer Learning for Task Invariance in Convolutional Neural
Networks for Speech Processing [6.376852004129252]
We introduce the novel concept of anti-transfer learning for speech processing with convolutional neural networks.
We show that anti-transfer actually leads to the intended invariance to the task and to more appropriate features for the target task at hand.
arXiv Detail & Related papers (2020-06-11T15:03:29Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
Pre-training a deep neural network on the ImageNet dataset is a common practice for training deep learning models.
The technique of pre-training on one task and then retraining on a new one is called transfer learning.
In this paper we analyse the effectiveness of using deep transfer learning for character recognition tasks.
arXiv Detail & Related papers (2020-01-02T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.