Compressive spectral image classification using 3D coded convolutional
neural network
- URL: http://arxiv.org/abs/2009.11948v3
- Date: Mon, 12 Jul 2021 09:25:22 GMT
- Title: Compressive spectral image classification using 3D coded convolutional
neural network
- Authors: Hao Zhang, Xu Ma, Xianhong Zhao, Gonzalo R. Arce
- Abstract summary: This paper develops a novel deep learning HIC approach based on measurements of coded-aperture snapshot spectral imagers (CASSI)
A new kind of deep learning strategy, namely 3D coded convolutional neural network (3D-CCNN), is proposed to efficiently solve for the classification problem.
The accuracy of classification is effectively improved by exploiting the synergy between the deep learning network and coded apertures.
- Score: 12.67293744927537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image classification (HIC) is an active research topic in
remote sensing. Hyperspectral images typically generate large data cubes posing
big challenges in data acquisition, storage, transmission and processing. To
overcome these limitations, this paper develops a novel deep learning HIC
approach based on compressive measurements of coded-aperture snapshot spectral
imagers (CASSI), without reconstructing the complete hyperspectral data cube. A
new kind of deep learning strategy, namely 3D coded convolutional neural
network (3D-CCNN) is proposed to efficiently solve for the classification
problem, where the hardware-based coded aperture is regarded as a pixel-wise
connected network layer. An end-to-end training method is developed to jointly
optimize the network parameters and the coded apertures with periodic
structures. The accuracy of classification is effectively improved by
exploiting the synergy between the deep learning network and coded apertures.
The superiority of the proposed method is assessed over the state-of-the-art
HIC methods on several hyperspectral datasets.
Related papers
- Spatial-Spectral Hyperspectral Classification based on Learnable 3D
Group Convolution [18.644268589334217]
This paper proposes a learnable group convolution network (LGCNet) based on an improved 3D-DenseNet model and a lightweight model design.
The LGCNet module improves the shortcomings of group convolution by introducing a dynamic learning method for the input channels and convolution kernel grouping.
LGCNet has achieved progress in inference speed and accuracy, and outperforms mainstream hyperspectral image classification methods on the Indian Pines, Pavia University, and KSC datasets.
arXiv Detail & Related papers (2023-07-15T05:47:12Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
We propose a noval multi-scale convolutional embedding module for hyperspectral images (HSI) to realize effective extraction of spatial-spectral information.
Similar to Mask autoencoder, but our pre-training method only masks the corresponding token of the central pixel in the encoder, and inputs the remaining token into the decoder to reconstruct the spectral information of the central pixel.
arXiv Detail & Related papers (2022-03-09T14:42:26Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - End to end hyperspectral imaging system with coded compression imaging
process [13.00211539170695]
We present a physics-informed self-supervising CNN method based on a coded aperture spectral imaging system.
Our method effectively exploits the spatial-spectral relativization from the coded spectral information and forms a self-supervising system based on the camera quantum effect model.
arXiv Detail & Related papers (2021-09-06T13:39:54Z) - Self-supervised Neural Networks for Spectral Snapshot Compressive
Imaging [15.616674529295366]
We consider using untrained neural networks to solve the reconstruction problem of snapshot compressive imaging (SCI)
In this paper, inspired by the untrained neural networks such as deep image priors (DIP) and deep decoders, we develop a framework by integrating DIP into the plug-and-play regime, leading to a self-supervised network for spectral SCI reconstruction.
arXiv Detail & Related papers (2021-08-28T14:17:38Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Sparse Coding Driven Deep Decision Tree Ensembles for Nuclear
Segmentation in Digital Pathology Images [15.236873250912062]
We propose an easily trained yet powerful representation learning approach with performance highly competitive to deep neural networks in a digital pathology image segmentation task.
The method, called sparse coding driven deep decision tree ensembles that we abbreviate as ScD2TE, provides a new perspective on representation learning.
arXiv Detail & Related papers (2020-08-13T02:59:31Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.