How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score
Assessment
- URL: http://arxiv.org/abs/2009.12202v1
- Date: Tue, 22 Sep 2020 23:29:57 GMT
- Title: How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score
Assessment
- Authors: Yun Zhao, Franklin Ly, Qinghang Hong, Zhuowei Cheng, Tyler Santander,
Henry T. Yang, Paul K. Hansma, and Linda Petzold
- Abstract summary: We propose an end-to-end deep learning framework for chronic pain score assessment.
Our framework splits the long time-course data samples into shorter sequences, and uses Consensus Prediction to classify the results.
We evaluate the performance of our framework on two chronic pain score datasets.
- Score: 4.463811772756938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chronic pain is defined as pain that lasts or recurs for more than 3 to 6
months, often long after the injury or illness that initially caused the pain
has healed. The "gold standard" for chronic pain assessment remains self report
and clinical assessment via a biopsychosocial interview, since there has been
no device that can measure it. A device to measure pain would be useful not
only for clinical assessment, but potentially also as a biofeedback device
leading to pain reduction. In this paper we propose an end-to-end deep learning
framework for chronic pain score assessment. Our deep learning framework splits
the long time-course data samples into shorter sequences, and uses Consensus
Prediction to classify the results. We evaluate the performance of our
framework on two chronic pain score datasets collected from two iterations of
prototype Pain Meters that we have developed to help chronic pain subjects
better understand their health condition.
Related papers
- Deep Rib Fracture Instance Segmentation and Classification from CT on
the RibFrac Challenge [66.86170104167608]
The RibFrac Challenge provides a benchmark dataset of over 5,000 rib fractures from 660 CT scans.
During the MICCAI 2020 challenge period, 243 results were evaluated, and seven teams were invited to participate in the challenge summary.
The analysis revealed that several top rib fracture detection solutions achieved performance comparable or even better than human experts.
arXiv Detail & Related papers (2024-02-14T18:18:33Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Chronic pain patient narratives allow for the estimation of current pain
intensity [0.9459979060644313]
We show that language features from patient narratives indeed convey information relevant for pain intensity estimation.
Our results show that patients with mild pain focus more on the use of verbs, whilst moderate and severe pain patients focus on adverbs, and nouns and adjectives, respectively.
arXiv Detail & Related papers (2022-10-31T16:59:21Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Automatic Estimation of Ulcerative Colitis Severity from Endoscopy
Videos using Ordinal Multi-Instance Learning [50.591267188664666]
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by relapsing inflammation of the large intestine.
The severity of UC is often represented by the Mayo Endoscopic Subscore (MES) which quantifies mucosal disease activity from endoscopy videos.
We propose a novel weakly supervised, ordinal classification method to estimate frame severity from video MES labels alone.
arXiv Detail & Related papers (2021-09-29T19:42:51Z) - Chronic Pain and Language: A Topic Modelling Approach to Personal Pain
Descriptions [0.688204255655161]
Chronic pain is recognized as a major health problem, with impacts not only at the economic, but also at the social, and individual levels.
Being a private and subjective experience, it is impossible to externally and impartially experience, describe, and interpret chronic pain as a purely noxious stimulus.
We propose and discuss a topic modelling approach to recognize patterns in verbal descriptions of chronic pain, and use these patterns to quantify and qualify experiences of pain.
arXiv Detail & Related papers (2021-09-01T14:31:16Z) - Analysis of Chronic Pain Experiences Based on Online Reports: the RRCP
Dataset [0.688204255655161]
We present the Reddit Reports of Chronic Pain dataset, which comprises social media textual descriptions and discussion of various forms of chronic pain experiences.
For each pathology, we identify the main concerns emergent of its consequent experience of chronic pain, as represented by a subset of documents explicitly related to it.
We argue that our unsupervised semantic analysis of descriptions of chronic pain echoes clinical research on how different pathologies manifest in terms of the chronic pain experience.
arXiv Detail & Related papers (2021-08-23T14:53:03Z) - Non-contact Pain Recognition from Video Sequences with Remote
Physiological Measurements Prediction [53.03469655641418]
We present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition.
We establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases.
arXiv Detail & Related papers (2021-05-18T20:47:45Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
We propose a representation learning-inspired approach for automated vertebral fracture detection.
We present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%.
arXiv Detail & Related papers (2020-08-18T10:03:45Z) - Pain Intensity Estimation from Mobile Video Using 2D and 3D Facial
Keypoints [1.6402428190800593]
Managing post-surgical pain is critical for successful surgical outcomes.
One of the challenges of pain management is accurately assessing the pain level of patients.
We introduce an approach that analyzes 2D and 3D facial keypoints of post-surgical patients to estimate their pain intensity level.
arXiv Detail & Related papers (2020-06-17T00:18:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.