Persian Keyphrase Generation Using Sequence-to-Sequence Models
- URL: http://arxiv.org/abs/2009.12271v1
- Date: Fri, 25 Sep 2020 14:40:14 GMT
- Title: Persian Keyphrase Generation Using Sequence-to-Sequence Models
- Authors: Ehsan Doostmohammadi, Mohammad Hadi Bokaei, Hossein Sameti
- Abstract summary: Keyphrases are a summary of an input text and provide the main subjects discussed in the text.
In this paper, we try to tackle the problem of keyphrase generation and extraction from news articles using deep sequence-to-sequence models.
- Score: 1.192436948211501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keyphrases are a very short summary of an input text and provide the main
subjects discussed in the text. Keyphrase extraction is a useful upstream task
and can be used in various natural language processing problems, for example,
text summarization and information retrieval, to name a few. However, not all
the keyphrases are explicitly mentioned in the body of the text. In real-world
examples there are always some topics that are discussed implicitly. Extracting
such keyphrases requires a generative approach, which is adopted here. In this
paper, we try to tackle the problem of keyphrase generation and extraction from
news articles using deep sequence-to-sequence models. These models
significantly outperform the conventional methods such as Topic Rank, KPMiner,
and KEA in the task of keyphrase extraction.
Related papers
- SimCKP: Simple Contrastive Learning of Keyphrase Representations [36.88517357720033]
We propose SimCKP, a simple contrastive learning framework that consists of two stages: 1) An extractor-generator that extracts keyphrases by learning context-aware phrase-level representations in a contrastive manner while also generating keyphrases that do not appear in the document; and 2) A reranker that adapts scores for each generated phrase by likewise aligning their representations with the corresponding document.
arXiv Detail & Related papers (2023-10-12T11:11:54Z) - EntropyRank: Unsupervised Keyphrase Extraction via Side-Information
Optimization for Language Model-based Text Compression [62.261476176242724]
We propose an unsupervised method to extract keywords and keyphrases from texts based on a pre-trained language model (LM) and Shannon's information.
Specifically, our method extracts phrases having the highest conditional entropy under the LM.
arXiv Detail & Related papers (2023-08-25T14:23:40Z) - Improving Keyphrase Extraction with Data Augmentation and Information
Filtering [67.43025048639333]
Keyphrase extraction is one of the essential tasks for document understanding in NLP.
We present a novel corpus and method for keyphrase extraction from the videos streamed on the Behance platform.
arXiv Detail & Related papers (2022-09-11T22:38:02Z) - Applying Transformer-based Text Summarization for Keyphrase Generation [2.28438857884398]
Keyphrases are crucial for searching and systematizing scholarly documents.
In this paper, we experiment with popular transformer-based models for abstractive text summarization.
We show that summarization models are quite effective in generating keyphrases in the terms of the full-match F1-score and BERT.Score.
We also investigate several ordering strategies to target keyphrases.
arXiv Detail & Related papers (2022-09-08T13:01:52Z) - Representation Learning for Resource-Constrained Keyphrase Generation [78.02577815973764]
We introduce salient span recovery and salient span prediction as guided denoising language modeling objectives.
We show the effectiveness of the proposed approach for low-resource and zero-shot keyphrase generation.
arXiv Detail & Related papers (2022-03-15T17:48:04Z) - KPDrop: An Approach to Improving Absent Keyphrase Generation [26.563045686728135]
Keyphrase generation is the task of generating phrases (keyphrases) that summarize the main topics of a given document.
We propose an approach, called keyphrase dropout (or KPDrop) to improve absent keyphrase generation.
arXiv Detail & Related papers (2021-12-02T18:25:56Z) - Deep Keyphrase Completion [59.0413813332449]
Keyphrase provides accurate information of document content that is highly compact, concise, full of meanings, and widely used for discourse comprehension, organization, and text retrieval.
We propose textitkeyphrase completion (KPC) to generate more keyphrases for document (e.g. scientific publication) taking advantage of document content along with a very limited number of known keyphrases.
We name it textitdeep keyphrase completion (DKPC) since it attempts to capture the deep semantic meaning of the document content together with known keyphrases via a deep learning framework
arXiv Detail & Related papers (2021-10-29T07:15:35Z) - UniKeyphrase: A Unified Extraction and Generation Framework for
Keyphrase Prediction [20.26899340581431]
Keyphrase Prediction task aims at predicting several keyphrases that can summarize the main idea of the given document.
Mainstream KP methods can be categorized into purely generative approaches and integrated models with extraction and generation.
We propose UniKeyphrase, a novel end-to-end learning framework that jointly learns to extract and generate keyphrases.
arXiv Detail & Related papers (2021-06-09T07:09:51Z) - Select, Extract and Generate: Neural Keyphrase Generation with
Layer-wise Coverage Attention [75.44523978180317]
We propose emphSEG-Net, a neural keyphrase generation model that is composed of two major components.
The experimental results on seven keyphrase generation benchmarks from scientific and web documents demonstrate that SEG-Net outperforms the state-of-the-art neural generative methods by a large margin.
arXiv Detail & Related papers (2020-08-04T18:00:07Z) - Exclusive Hierarchical Decoding for Deep Keyphrase Generation [63.357895318562214]
Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases.
Previous work in this setting employs a sequential decoding process to generate keyphrases.
We propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism.
arXiv Detail & Related papers (2020-04-18T02:58:00Z) - Keyphrase Extraction with Span-based Feature Representations [13.790461555410747]
Keyphrases are capable of providing semantic metadata characterizing documents.
Three approaches to address keyphrase extraction: (i) traditional two-step ranking method, (ii) sequence labeling and (iii) generation using neural networks.
In this paper, we propose a novelty Span Keyphrase Extraction model that extracts span-based feature representation of keyphrase directly from all the content tokens.
arXiv Detail & Related papers (2020-02-13T09:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.