Towards Debiasing NLU Models from Unknown Biases
- URL: http://arxiv.org/abs/2009.12303v4
- Date: Tue, 13 Oct 2020 12:37:27 GMT
- Title: Towards Debiasing NLU Models from Unknown Biases
- Authors: Prasetya Ajie Utama, Nafise Sadat Moosavi, Iryna Gurevych
- Abstract summary: NLU models often exploit biases to achieve high dataset-specific performance without properly learning the intended task.
We present a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance.
- Score: 70.31427277842239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: NLU models often exploit biases to achieve high dataset-specific performance
without properly learning the intended task. Recently proposed debiasing
methods are shown to be effective in mitigating this tendency. However, these
methods rely on a major assumption that the types of bias should be known
a-priori, which limits their application to many NLU tasks and datasets. In
this work, we present the first step to bridge this gap by introducing a
self-debiasing framework that prevents models from mainly utilizing biases
without knowing them in advance. The proposed framework is general and
complementary to the existing debiasing methods. We show that it allows these
existing methods to retain the improvement on the challenge datasets (i.e.,
sets of examples designed to expose models' reliance on biases) without
specifically targeting certain biases. Furthermore, the evaluation suggests
that applying the framework results in improved overall robustness.
Related papers
- Debiased Recommendation with Noisy Feedback [41.38490962524047]
We study intersectional threats to the unbiased learning of the prediction model from data MNAR and OME in the collected data.
First, we design OME-EIB, OME-IPS, and OME-DR estimators, which largely extend the existing estimators to combat OME in real-world recommendation scenarios.
arXiv Detail & Related papers (2024-06-24T23:42:18Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
We propose a novel Causality and Independence Enhancement (CIE) framework, applicable to various graph neural networks (GNNs)
Our approach estimates causal and spurious features at the node representation level and mitigates the influence of spurious correlations.
Our approach CIE not only significantly enhances the performance of GNNs but outperforms state-of-the-art debiased node classification methods.
arXiv Detail & Related papers (2023-10-14T13:56:24Z) - Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased
Recommendations [4.960902915238239]
We propose a theoretically guaranteed model-agnostic balancing approach that can be applied to any existing debiasing method.
The proposed approach makes full use of unbiased data by alternatively correcting model parameters learned with biased data, and adaptively learning balance coefficients of biased samples for further debiasing.
arXiv Detail & Related papers (2023-04-17T08:56:55Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Debiasing Methods in Natural Language Understanding Make Bias More
Accessible [28.877572447481683]
Recent debiasing methods in natural language understanding (NLU) improve performance on such datasets by pressuring models into making unbiased predictions.
We propose a general probing-based framework that allows for post-hoc interpretation of biases in language models.
We show that, counter-intuitively, the more a language model is pushed towards a debiased regime, the more bias is actually encoded in its inner representations.
arXiv Detail & Related papers (2021-09-09T08:28:22Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended task.
Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available.
We show a method for training models that learn to ignore these problematic correlations.
arXiv Detail & Related papers (2020-12-02T16:10:54Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
We introduce a novel debiasing method called confidence regularization.
It discourages models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples.
We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets.
arXiv Detail & Related papers (2020-05-01T11:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.