Cross Learning in Deep Q-Networks
- URL: http://arxiv.org/abs/2009.13780v1
- Date: Tue, 29 Sep 2020 04:58:17 GMT
- Title: Cross Learning in Deep Q-Networks
- Authors: Xing Wang, Alexander Vinel
- Abstract summary: We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
- Score: 82.20059754270302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel cross Q-learning algorithm, aim at
alleviating the well-known overestimation problem in value-based reinforcement
learning methods, particularly in the deep Q-networks where the overestimation
is exaggerated by function approximation errors. Our algorithm builds on double
Q-learning, by maintaining a set of parallel models and estimate the Q-value
based on a randomly selected network, which leads to reduced overestimation
bias as well as the variance. We provide empirical evidence on the advantages
of our method by evaluating on some benchmark environment, the experimental
results demonstrate significant improvement of performance in reducing the
overestimation bias and stabilizing the training, further leading to better
derived policies.
Related papers
- Regularized Q-learning through Robust Averaging [3.4354636842203026]
We propose a new Q-learning variant, called 2RA Q-learning, that addresses some weaknesses of existing Q-learning methods in a principled manner.
One such weakness is an underlying estimation bias which cannot be controlled and often results in poor performance.
We show that 2RA Q-learning converges to the optimal policy and analyze its theoretical mean-squared error.
arXiv Detail & Related papers (2024-05-03T15:57:26Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - A Perspective of Q-value Estimation on Offline-to-Online Reinforcement
Learning [54.48409201256968]
offline-to-online Reinforcement Learning (O2O RL) aims to improve the performance of offline pretrained policy using only a few online samples.
Most O2O methods focus on the balance between RL objective and pessimism, or the utilization of offline and online samples.
arXiv Detail & Related papers (2023-12-12T19:24:35Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Simultaneous Double Q-learning with Conservative Advantage Learning for
Actor-Critic Methods [133.85604983925282]
We propose Simultaneous Double Q-learning with Conservative Advantage Learning (SDQ-CAL)
Our algorithm realizes less biased value estimation and achieves state-of-the-art performance in a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2022-05-08T09:17:16Z) - Online Target Q-learning with Reverse Experience Replay: Efficiently
finding the Optimal Policy for Linear MDPs [50.75812033462294]
We bridge the gap between practical success of Q-learning and pessimistic theoretical results.
We present novel methods Q-Rex and Q-RexDaRe.
We show that Q-Rex efficiently finds the optimal policy for linear MDPs.
arXiv Detail & Related papers (2021-10-16T01:47:41Z) - On the Estimation Bias in Double Q-Learning [20.856485777692594]
Double Q-learning is not fully unbiased and suffers from underestimation bias.
We show that such underestimation bias may lead to multiple non-optimal fixed points under an approximated Bellman operator.
We propose a simple but effective approach as a partial fix for the underestimation bias in double Q-learning.
arXiv Detail & Related papers (2021-09-29T13:41:24Z) - Parameter-Free Deterministic Reduction of the Estimation Bias in
Continuous Control [0.0]
We introduce a parameter-free, novel deep Q-learning variant to reduce this underestimation bias for continuous control.
We test the performance of our improvement on a set of MuJoCo and Box2D continuous control tasks.
arXiv Detail & Related papers (2021-09-24T07:41:07Z) - Estimation Error Correction in Deep Reinforcement Learning for
Deterministic Actor-Critic Methods [0.0]
In value-based deep reinforcement learning methods, approximation of value functions induces overestimation bias and leads to suboptimal policies.
We show that in deep actor-critic methods that aim to overcome the overestimation bias, if the reinforcement signals received by the agent have a high variance, a significant underestimation bias arises.
To minimize the underestimation, we introduce a parameter-free, novel deep Q-learning variant.
arXiv Detail & Related papers (2021-09-22T13:49:35Z) - On the Reduction of Variance and Overestimation of Deep Q-Learning [0.0]
We propose using Dropout techniques on deep Q-Learning algorithm as a way to reduce variance and overestimation.
We also present experiments conducted on benchmark environments, demonstrating the effectiveness of our methodology in enhancing stability and reducing both variance and overestimation in model performance.
arXiv Detail & Related papers (2019-10-14T08:43:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.