What if Neural Networks had SVDs?
- URL: http://arxiv.org/abs/2009.13977v1
- Date: Tue, 29 Sep 2020 12:58:52 GMT
- Title: What if Neural Networks had SVDs?
- Authors: Alexander Mathiasen, Frederik Hvilsh{\o}j, Jakob R{\o}dsgaard
J{\o}rgensen, Anshul Nasery, Davide Mottin
- Abstract summary: Various Neural Networks employ time-consuming matrix operations like matrix inversion.
We present an algorithm that is fast enough to speed up several matrix operations.
- Score: 66.91160214071088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Various Neural Networks employ time-consuming matrix operations like matrix
inversion. Many such matrix operations are faster to compute given the Singular
Value Decomposition (SVD). Previous work allows using the SVD in Neural
Networks without computing it. In theory, the techniques can speed up matrix
operations, however, in practice, they are not fast enough. We present an
algorithm that is fast enough to speed up several matrix operations. The
algorithm increases the degree of parallelism of an underlying matrix
multiplication $H\cdot X$ where $H$ is an orthogonal matrix represented by a
product of Householder matrices. Code is available at
www.github.com/AlexanderMath/fasth .
Related papers
- Fast Matrix Multiplication Without Tears: A Constraint Programming
Approach [8.52818380743467]
It is known that the multiplication of an $N times M$ matrix with an $M times P$ matrix can be performed using fewer multiplications than what the naive $NMP approach suggests.
This gives rise to the constraint satisfaction problem of fast matrix multiplication.
We propose a simple yet novel Constraint Programming approach to find non-commutative algorithms for fast matrix multiplication.
arXiv Detail & Related papers (2023-06-01T19:15:24Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - A Structured Sparse Neural Network and Its Matrix Calculations Algorithm [0.0]
We introduce a nonsymmetric, tridiagonal matrix with offdiagonal sparse entries and offset sub and super-diagonals.
For the cases where the matrix inverse does not exist, a least square type pseudoinverse is provided.
Results show significant improvement in computational costs specially when the size of matrix increases.
arXiv Detail & Related papers (2022-07-02T19:38:48Z) - Block-encoding dense and full-rank kernels using hierarchical matrices:
applications in quantum numerical linear algebra [6.338178373376447]
We propose a block-encoding scheme of the hierarchical matrix structure on a quantum computer.
Our method can improve the runtime of solving quantum linear systems of dimension $N$ to $O(kappa operatornamepolylog(fracNvarepsilon))$.
arXiv Detail & Related papers (2022-01-27T05:24:02Z) - Fast Differentiable Matrix Square Root [65.67315418971688]
We propose two more efficient variants to compute the differentiable matrix square root.
For the forward propagation, one method is to use Matrix Taylor Polynomial (MTP)
The other method is to use Matrix Pad'e Approximants (MPA)
arXiv Detail & Related papers (2022-01-21T12:18:06Z) - Multiplying Matrices Without Multiplying [0.0]
Multiplying matrices is among the most fundamental and compute-intensive operations in machine learning.
We introduce a learning-based algorithm for this task that greatly outperforms existing methods.
arXiv Detail & Related papers (2021-06-21T05:08:54Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Constant-Depth and Subcubic-Size Threshold Circuits for Matrix
Multiplication [1.9518237361775532]
Recent advances in large-scale neural computing hardware has made their practical implementation a near-term possibility.
We describe a theoretical approach for multiplying two $N$ by $N$ matrices that integrates threshold gate logic.
Dense matrix multiplication is a core operation in convolutional neural network training.
arXiv Detail & Related papers (2020-06-25T18:28:10Z) - An Analysis of SVD for Deep Rotation Estimation [63.97835949897361]
We present a theoretical analysis that shows SVD is the natural choice for projecting onto the rotation group.
Our analysis shows simply replacing existing representations with the SVD orthogonalization procedure obtains state of the art performance in many deep learning applications.
arXiv Detail & Related papers (2020-06-25T17:58:28Z) - Sketching Transformed Matrices with Applications to Natural Language
Processing [76.6222695417524]
We propose a space-efficient sketching algorithm for computing the product of a given small matrix with the transformed matrix.
We show that our approach obtains small error and is efficient in both space and time.
arXiv Detail & Related papers (2020-02-23T03:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.