Inverse Classification with Limited Budget and Maximum Number of
Perturbed Samples
- URL: http://arxiv.org/abs/2009.14111v1
- Date: Tue, 29 Sep 2020 15:52:10 GMT
- Title: Inverse Classification with Limited Budget and Maximum Number of
Perturbed Samples
- Authors: Jaehoon Koo, Diego Klabjan, Jean Utke
- Abstract summary: Inverse classification is a post modeling process to find changes in input features of samples to alter the initially predicted class.
In this study, we propose a new framework to solve inverse classification that maximizes the number of perturbed samples.
We design algorithms to solve this problem based on gradient methods, processes, Lagrangian relaxations, and the Gumbel trick.
- Score: 18.76745359031975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most recent machine learning research focuses on developing new classifiers
for the sake of improving classification accuracy. With many well-performing
state-of-the-art classifiers available, there is a growing need for
understanding interpretability of a classifier necessitated by practical
purposes such as to find the best diet recommendation for a diabetes patient.
Inverse classification is a post modeling process to find changes in input
features of samples to alter the initially predicted class. It is useful in
many business applications to determine how to adjust a sample input data such
that the classifier predicts it to be in a desired class. In real world
applications, a budget on perturbations of samples corresponding to customers
or patients is usually considered, and in this setting, the number of
successfully perturbed samples is key to increase benefits. In this study, we
propose a new framework to solve inverse classification that maximizes the
number of perturbed samples subject to a per-feature-budget limits and
favorable classification classes of the perturbed samples. We design algorithms
to solve this optimization problem based on gradient methods, stochastic
processes, Lagrangian relaxations, and the Gumbel trick. In experiments, we
find that our algorithms based on stochastic processes exhibit an excellent
performance in different budget settings and they scale well.
Related papers
- Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
Regression tasks in computer vision are often formulated into classification by quantizing the target space into classes.
The majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range.
We propose to construct hierarchical classifiers for solving imbalanced regression tasks.
Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks.
arXiv Detail & Related papers (2023-10-26T04:54:39Z) - Efficient Failure Pattern Identification of Predictive Algorithms [15.02620042972929]
We propose a human-machine collaborative framework that consists of a team of human annotators and a sequential recommendation algorithm.
The results empirically demonstrate the competitive performance of our framework on multiple datasets at various signal-to-noise ratios.
arXiv Detail & Related papers (2023-06-01T14:54:42Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Bilevel Optimization for Feature Selection in the Data-Driven Newsvendor
Problem [8.281391209717105]
We study the feature-based news vendor problem, in which a decision-maker has access to historical data.
In this setting, we investigate feature selection, aiming to derive sparse, explainable models with improved out-of-sample performance.
We present a mixed integer linear program reformulation for the bilevel program, which can be solved to optimality with standard optimization solvers.
arXiv Detail & Related papers (2022-09-12T08:52:26Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
We present a model based on Generative Adversarial Networks which uses additional regularization losses to map majority samples to corresponding synthetic minority samples.
We show that the proposed method improves average precision when compared to alternative re-weighting and oversampling techniques.
arXiv Detail & Related papers (2022-04-19T06:02:53Z) - Scalable Optimal Classifiers for Adversarial Settings under Uncertainty [10.90668635921398]
We consider the problem of finding optimal classifiers in an adversarial setting where the class-1 data is generated by an attacker whose objective is not known to the defender.
We show that this low-dimensional characterization enables to develop a training method to compute provably approximately optimal classifiers in a scalable manner.
arXiv Detail & Related papers (2021-06-28T13:33:53Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z) - Distributionally Robust Weighted $k$-Nearest Neighbors [21.537952410507483]
Learning a robust classifier from a few samples remains a key challenge in machine learning.
In this paper, we study a minimax distributionally robust formulation of weighted $k$-nearest neighbors.
We develop an algorithm, textttDr.k-NN, that efficiently solves this functional optimization problem.
arXiv Detail & Related papers (2020-06-07T00:34:33Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
We consider the computational issues due to large sample size within the discriminant analysis framework.
We propose a new compression approach for reducing the number of training samples for linear and quadratic discriminant analysis.
arXiv Detail & Related papers (2020-05-08T05:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.