Asymptotic state transformations of continuous variable resources
- URL: http://arxiv.org/abs/2010.00044v3
- Date: Wed, 14 Dec 2022 17:50:28 GMT
- Title: Asymptotic state transformations of continuous variable resources
- Authors: Giovanni Ferrari, Ludovico Lami, Thomas Theurer, Martin B. Plenio
- Abstract summary: We study state transformations in continuous variable quantum resource theories.
We prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound transformation rates.
- Score: 7.742297876120562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study asymptotic state transformations in continuous variable quantum
resource theories. In particular, we prove that monotones displaying lower
semicontinuity and strong superadditivity can be used to bound asymptotic
transformation rates in these settings. This removes the need for asymptotic
continuity, which cannot be defined in the traditional sense for
infinite-dimensional systems. We consider three applications, to the resource
theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum
thermodynamics. In cases (II) and (III), the employed monotones are the
(infinite-dimensional) squashed entanglement and the free energy, respectively.
For case (I), we consider the measured relative entropy of nonclassicality and
prove it to be lower semicontinuous and strongly superadditive. One of our main
technical contributions, and a key tool to establish these results, is a handy
variational expression for the measured relative entropy of nonclassicality.
Our technique then yields computable upper bounds on asymptotic transformation
rates, including those achievable under linear optical elements. We also prove
a number of results which guarantee that the measured relative entropy of
nonclassicality is bounded on any physically meaningful state and easily
computable for some classes of states of interest, e.g., Fock diagonal states.
We conclude by applying our findings to the problem of cat state manipulation
and noisy Fock state purification.
Related papers
- Continuity of entropies via integral representations [16.044444452278064]
We show that Frenkel's integral representation of the quantum relative entropy provides a natural framework to derive continuity bounds for quantum information measures.
We obtain a number of results: (1) a tight continuity relation for the conditional entropy in the case where the two states have equal marginals on the conditioning system, resolving a conjecture by Wilde in this special case; (2) a stronger version of the Fannes-Audenaert inequality on quantum entropy; and (3) better estimates on the quantum capacity of approximately degradable channels.
arXiv Detail & Related papers (2024-08-27T17:44:52Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - On the equivalence between squeezing and entanglement potential for
two-mode Gaussian states [6.152099987181264]
The maximum amount of entanglement achievable under passive transformations by continuous-variable states is called the entanglement potential.
Recent work has demonstrated that the entanglement potential is upper-bounded by a simple function of the squeezing of formation.
We introduce a larger class of states that we prove saturates the bound, and we conjecture that all two-mode Gaussian states can be passively transformed into this class.
arXiv Detail & Related papers (2023-07-19T18:00:23Z) - Convergence of Dynamics on Inductive Systems of Banach Spaces [68.8204255655161]
Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points.
We present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces.
arXiv Detail & Related papers (2023-06-28T09:52:20Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Symmetry Resolved Entanglement of Excited States in Quantum Field Theory
III: Bosonic and Fermionic Negativity [0.0]
We study the resolved R'enyi entropies of quasi-particle excited states in quantum field theory.
We compute the ratio of charged moments of the partially transposed reduced density matrix as an expectation value of twist operators.
We find that although the operation of partial transposition requires a redefinition for fermionic theories, the ratio of the negativity moments between an excited state and the ground state is universal and identical for fermions and bosons.
arXiv Detail & Related papers (2023-02-06T10:05:58Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Attainability and lower semi-continuity of the relative entropy of
entanglement, and variations on the theme [8.37609145576126]
The relative entropy of entanglement $E_Rite is defined as the distance of a multi-part quantum entanglement from the set of separable states as measured by the quantum relative entropy.
We show that this state is always achieved, i.e. any state admits a closest separable state, even in dimensions; also, $E_Rite is everywhere lower semi-negative $lambda_$quasi-probability distribution.
arXiv Detail & Related papers (2021-05-17T18:03:02Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.