Quasar Detection using Linear Support Vector Machine with Learning From
Mistakes Methodology
- URL: http://arxiv.org/abs/2010.00401v2
- Date: Fri, 2 Oct 2020 13:59:59 GMT
- Title: Quasar Detection using Linear Support Vector Machine with Learning From
Mistakes Methodology
- Authors: Aniruddh Herle, Janamejaya Channegowda, Dinakar Prabhu
- Abstract summary: Linear Support Vector Machine (LSVM) is explored to detect Quasars, which are extremely bright objects in which a supermassive black hole is surrounded by a luminous accretion disk.
It was observed that LSVM along with Ensemble Bagged Trees (EBT) achieved a 10x reduction in the False Negative Rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Astronomy requires the collection and assimilation of vast
volumes of data. The data handling and processing problem has become severe as
the sheer volume of data produced by scientific instruments each night grows
exponentially. This problem becomes extensive for conventional methods of
processing the data, which was mostly manual, but is the perfect setting for
the use of Machine Learning approaches. While building classifiers for
Astronomy, the cost of losing a rare object like supernovae or quasars to
detection losses is far more severe than having many false positives, given the
rarity and scientific value of these objects. In this paper, a Linear Support
Vector Machine (LSVM) is explored to detect Quasars, which are extremely bright
objects in which a supermassive black hole is surrounded by a luminous
accretion disk. In Astronomy, it is vital to correctly identify quasars, as
they are very rare in nature. Their rarity creates a class-imbalance problem
that needs to be taken into consideration. The class-imbalance problem and high
cost of misclassification are taken into account while designing the
classifier. To achieve this detection, a novel classifier is explored, and its
performance is evaluated. It was observed that LSVM along with Ensemble Bagged
Trees (EBT) achieved a 10x reduction in the False Negative Rate, using the
Learning from Mistakes methodology.
Related papers
- A Classifier-Based Approach to Multi-Class Anomaly Detection for Astronomical Transients [0.0]
Real-time anomaly detection is essential for identifying rare transients in the era of large-scale astronomical surveys.
Currently, most anomaly detection algorithms for astronomical transients rely on hand-crafted features extracted from light curves.
We introduce an alternative approach to detecting anomalies: using the penultimate layer of a neural network classifier as the latent space for anomaly detection.
arXiv Detail & Related papers (2024-03-21T18:00:00Z) - Multi-Class Deep SVDD: Anomaly Detection Approach in Astronomy with
Distinct Inlier Categories [46.34797489552547]
We propose Multi-Class Deep Support Vector Data Description (MCDSVDD) to handle different inlier categories with distinct data distributions.
MCDSVDD uses a neural network to map the data into hyperspheres, where each hypersphere represents a specific inlier category.
Our results demonstrate the efficacy of MCDSVDD in detecting anomalous sources while leveraging the presence of different inlier categories.
arXiv Detail & Related papers (2023-08-09T15:10:53Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Improving Astronomical Time-series Classification via Data Augmentation
with Generative Adversarial Networks [1.2891210250935146]
We propose a data augmentation methodology based on Generative Adrial Networks (GANs) to generate a variety of synthetic light curves from variable stars.
The classification accuracy of variable stars is improved significantly when training with synthetic data and testing with real data.
arXiv Detail & Related papers (2022-05-13T16:39:54Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals.
We analyze the challenges these methods meet with the empirical experiment results.
We introduce a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance.
arXiv Detail & Related papers (2022-03-23T07:33:37Z) - Detection of extragalactic Ultra-Compact Dwarfs and Globular Clusters
using Explainable AI techniques [1.3764085113103222]
Compact stellar systems such as Ultra-compact dwarfs (UCDs) and Globular Clusters (GCs) around galaxies are known to be the tracers of the merger events that have been forming these galaxies.
Here, we train a machine learning model to separate these objects from the foreground stars and background galaxies using the multi-wavelength imaging data of the Fornax galaxy cluster in 6 filters.
We are able to identify UCDs/GCs with a precision and a recall of >93 percent and provide relevances that reflect the importance of each feature dimension %(colors and angular sizes)
arXiv Detail & Related papers (2022-01-05T13:37:55Z) - A Deep Learning Approach for Active Anomaly Detection of Extragalactic
Transients [1.7152709285783647]
We present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events.
We rank 1,129,184 events based on an anomaly score estimated using an isolation forest.
Our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow up studies.
arXiv Detail & Related papers (2021-03-22T18:02:19Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - Learning perturbation sets for robust machine learning [97.6757418136662]
We use a conditional generator that defines the perturbation set over a constrained region of the latent space.
We measure the quality of our learned perturbation sets both quantitatively and qualitatively.
We leverage our learned perturbation sets to train models which are empirically and certifiably robust to adversarial image corruptions and adversarial lighting variations.
arXiv Detail & Related papers (2020-07-16T16:39:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.