Understanding tables with intermediate pre-training
- URL: http://arxiv.org/abs/2010.00571v2
- Date: Mon, 5 Oct 2020 12:26:40 GMT
- Title: Understanding tables with intermediate pre-training
- Authors: Julian Martin Eisenschlos, Syrine Krichene, Thomas M\"uller
- Abstract summary: We adapt TAPAS, a table-based BERT model, to recognize entailment.
We evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency.
- Score: 11.96734018295146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Table entailment, the binary classification task of finding if a sentence is
supported or refuted by the content of a table, requires parsing language and
table structure as well as numerical and discrete reasoning. While there is
extensive work on textual entailment, table entailment is less well studied. We
adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize
entailment. Motivated by the benefits of data augmentation, we create a
balanced dataset of millions of automatically created training examples which
are learned in an intermediate step prior to fine-tuning. This new data is not
only useful for table entailment, but also for SQA (Iyyer et al., 2017), a
sequential table QA task. To be able to use long examples as input of BERT
models, we evaluate table pruning techniques as a pre-processing step to
drastically improve the training and prediction efficiency at a moderate drop
in accuracy. The different methods set the new state-of-the-art on the TabFact
(Chen et al., 2020) and SQA datasets.
Related papers
- Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - Testing the Limits of Unified Sequence to Sequence LLM Pretraining on
Diverse Table Data Tasks [2.690048852269647]
We study the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models.
Our work is the first attempt at studying the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models.
arXiv Detail & Related papers (2023-10-01T21:06:15Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - Bridge the Gap between Language models and Tabular Understanding [99.88470271644894]
Table pretrain-then-finetune paradigm has been proposed and employed at a rapid pace after the success of pre-training in the natural language domain.
Despite the promising findings, there is an input gap between pre-training and fine-tuning phases.
We propose UTP, an approach that dynamically supports three types of multi-modal inputs: table-text, table, and text.
arXiv Detail & Related papers (2023-02-16T15:16:55Z) - ReasTAP: Injecting Table Reasoning Skills During Pre-training via
Synthetic Reasoning Examples [15.212332890570869]
We develop ReasTAP to show that high-level table reasoning skills can be injected into models during pre-training without a complex table-specific architecture design.
ReasTAP achieves new state-of-the-art performance on all benchmarks and delivers a significant improvement on low-resource setting.
arXiv Detail & Related papers (2022-10-22T07:04:02Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
We develop a simple table-based QA model with minimal annotation effort.
We propose an omnivorous pretraining approach that consumes both natural and synthetic data.
arXiv Detail & Related papers (2022-07-08T01:23:45Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - TABBIE: Pretrained Representations of Tabular Data [22.444607481407633]
We devise a simple pretraining objective that learns exclusively from tabular data.
Unlike competing approaches, our model (TABBIE) provides embeddings of all table substructures.
A qualitative analysis of our model's learned cell, column, and row representations shows that it understands complex table semantics and numerical trends.
arXiv Detail & Related papers (2021-05-06T11:15:16Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z) - TAPAS: Weakly Supervised Table Parsing via Pre-training [16.661382998729067]
We present TAPAS, an approach to question answering over tables without generating logical forms.
We experiment with three different semantic parsing datasets.
We find that TAPAS outperforms or rivals semantic parsing models by improving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-04-05T23:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.