Consensus Clustering With Unsupervised Representation Learning
- URL: http://arxiv.org/abs/2010.01245v2
- Date: Thu, 8 Jul 2021 17:20:52 GMT
- Title: Consensus Clustering With Unsupervised Representation Learning
- Authors: Jayanth Reddy Regatti, Aniket Anand Deshmukh, Eren Manavoglu, Urun
Dogan
- Abstract summary: We study the clustering ability of Bootstrap Your Own Latent (BYOL) and observe that features learnt using BYOL may not be optimal for clustering.
We propose a novel consensus clustering based loss function, and train BYOL with the proposed loss in an end-to-end way that improves the clustering ability and outperforms similar clustering based methods.
- Score: 4.164845768197489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep clustering and unsupervised representation learning
are based on the idea that different views of an input image (generated through
data augmentation techniques) must either be closer in the representation
space, or have a similar cluster assignment. Bootstrap Your Own Latent (BYOL)
is one such representation learning algorithm that has achieved
state-of-the-art results in self-supervised image classification on ImageNet
under the linear evaluation protocol. However, the utility of the learnt
features of BYOL to perform clustering is not explored. In this work, we study
the clustering ability of BYOL and observe that features learnt using BYOL may
not be optimal for clustering. We propose a novel consensus clustering based
loss function, and train BYOL with the proposed loss in an end-to-end way that
improves the clustering ability and outperforms similar clustering based
methods on some popular computer vision datasets.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
We propose Contrastive Learning-based Clustering (CLC), which uses contrastive learning to directly learn cluster assignment.
We achieve 53.4% accuracy on the full ImageNet dataset and outperform existing methods by large margins.
arXiv Detail & Related papers (2023-06-08T07:15:13Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Deep Fair Discriminative Clustering [24.237000220172906]
We study a general notion of group-level fairness for binary and multi-state protected status variables (PSVs)
We propose a refinement learning algorithm to combine the clustering goal with the fairness objective to learn fair clusters adaptively.
Our framework shows promising results for novel clustering tasks including flexible fairness constraints, multi-state PSVs and predictive clustering.
arXiv Detail & Related papers (2021-05-28T23:50:48Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.