HeteroFL: Computation and Communication Efficient Federated Learning for
Heterogeneous Clients
- URL: http://arxiv.org/abs/2010.01264v3
- Date: Tue, 14 Dec 2021 04:20:42 GMT
- Title: HeteroFL: Computation and Communication Efficient Federated Learning for
Heterogeneous Clients
- Authors: Enmao Diao, Jie Ding, Vahid Tarokh
- Abstract summary: We propose a new federated learning framework named HeteroFL to address heterogeneous clients equipped with very different computation and communication capabilities.
Our solution can enable the training of heterogeneous local models with varying complexities.
We show that adaptively distributing data according to clients' capabilities is both computation and communication efficient.
- Score: 42.365530133003816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a method of training machine learning models on
private data distributed over a large number of possibly heterogeneous clients
such as mobile phones and IoT devices. In this work, we propose a new federated
learning framework named HeteroFL to address heterogeneous clients equipped
with very different computation and communication capabilities. Our solution
can enable the training of heterogeneous local models with varying computation
complexities and still produce a single global inference model. For the first
time, our method challenges the underlying assumption of existing work that
local models have to share the same architecture as the global model. We
demonstrate several strategies to enhance FL training and conduct extensive
empirical evaluations, including five computation complexity levels of three
model architecture on three datasets. We show that adaptively distributing
subnetworks according to clients' capabilities is both computation and
communication efficient.
Related papers
- Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated learning (FL) is a distributed learning framework that leverages commonalities between distributed client datasets to train a global model.
personalized federated learning (PFL) seeks to address this by learning individual models tailored to each client.
We propose an algorithm, pFedFDA, that efficiently generates personalized models by adapting global generative classifiers to their local feature distributions.
arXiv Detail & Related papers (2024-11-01T03:03:52Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - pFedES: Model Heterogeneous Personalized Federated Learning with Feature
Extractor Sharing [19.403843478569303]
We propose a model-heterogeneous personalized Federated learning approach based on feature extractor sharing.
It incorporates a small homogeneous feature extractor into each client's heterogeneous local model.
It achieves 1.61% higher test accuracy, while reducing communication and computation costs by 99.6% and 82.9%, respectively.
arXiv Detail & Related papers (2023-11-12T15:43:39Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - FedHM: Efficient Federated Learning for Heterogeneous Models via
Low-rank Factorization [16.704006420306353]
A scalable federated learning framework should address heterogeneous clients equipped with different computation and communication capabilities.
This paper proposes FedHM, a novel federated model compression framework that distributes the heterogeneous low-rank models to clients and then aggregates them into a global full-rank model.
Our solution enables the training of heterogeneous local models with varying computational complexities and aggregates a single global model.
arXiv Detail & Related papers (2021-11-29T16:11:09Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.