The Traveling Observer Model: Multi-task Learning Through Spatial
Variable Embeddings
- URL: http://arxiv.org/abs/2010.02354v4
- Date: Mon, 22 Mar 2021 23:11:12 GMT
- Title: The Traveling Observer Model: Multi-task Learning Through Spatial
Variable Embeddings
- Authors: Elliot Meyerson and Risto Miikkulainen
- Abstract summary: We frame a general prediction system as an observer traveling around a continuous space, measuring values at some locations, and predicting them at others.
This perspective leads to a machine learning framework in which seemingly unrelated tasks can be solved by a single model.
In experiments, the approach is shown to (1) recover intuitive locations of variables in space and time, (2) exploit regularities across related datasets with completely disjoint input and output spaces, and (3) exploit regularities across seemingly unrelated tasks.
- Score: 28.029643109302715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper frames a general prediction system as an observer traveling around
a continuous space, measuring values at some locations, and predicting them at
others. The observer is completely agnostic about any particular task being
solved; it cares only about measurement locations and their values. This
perspective leads to a machine learning framework in which seemingly unrelated
tasks can be solved by a single model, by embedding their input and output
variables into a shared space. An implementation of the framework is developed
in which these variable embeddings are learned jointly with internal model
parameters. In experiments, the approach is shown to (1) recover intuitive
locations of variables in space and time, (2) exploit regularities across
related datasets with completely disjoint input and output spaces, and (3)
exploit regularities across seemingly unrelated tasks, outperforming
task-specific single-task models and multi-task learning alternatives. The
results suggest that even seemingly unrelated tasks may originate from similar
underlying processes, a fact that the traveling observer model can use to make
better predictions.
Related papers
- A Pattern Language for Machine Learning Tasks [0.0]
We view objective functions as constraints on the behaviour of learners.
We develop a formal graphical language that allows us to separate the core tasks of a behaviour from its implementation details.
As proof-of-concept, we design a novel task that enables converting classifiers into generative models we call "manipulators"
arXiv Detail & Related papers (2024-07-02T16:50:27Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - Simultaneous Clutter Detection and Semantic Segmentation of Moving
Objects for Automotive Radar Data [12.96486891333286]
Radar sensors are an important part of the environment perception system of autonomous vehicles.
One of the first steps during the processing of radar point clouds is often the detection of clutter.
Another common objective is the semantic segmentation of moving road users.
We show that our setup is highly effective and outperforms every existing network for semantic segmentation on the RadarScenes dataset.
arXiv Detail & Related papers (2023-11-13T11:29:38Z) - Kernel-based function learning in dynamic and non stationary
environments [0.6138671548064355]
One central theme in machine learning is function estimation from sparse and noisy data.
In this work, we consider kernel-based ridge regression and derive convergence conditions under non stationary distributions.
This includes the important exploration-exploitation problems where e.g. a set of agents/robots has to monitor an environment to reconstruct a sensorial field.
arXiv Detail & Related papers (2023-10-04T12:31:31Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
The study of multi-task learning has drawn great attention from the community.
Despite the remarkable progress, the challenge of optimally learning different tasks simultaneously remains to be explored.
Previous works attempt to modify the gradients from different tasks. Yet these methods give a subjective assumption of the relationship between tasks, and the modified gradient may be less accurate.
In this paper, we introduce Task Allocation(STA), a mechanism that addresses this issue by a task allocation approach, in which each sample is randomly allocated a subset of tasks.
For further progress, we propose Interleaved Task Allocation(ISTA) to iteratively allocate all
arXiv Detail & Related papers (2022-03-06T11:57:18Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Meta Adaptation using Importance Weighted Demonstrations [19.37671674146514]
In some cases, the distribution shifts, so much, that it is difficult for an agent to infer the new task.
We propose a novel algorithm to generalize on any related task by leveraging prior knowledge on a set of specific tasks.
We show experiments where the robot is trained from a diversity of environmental tasks and is also able to adapt to an unseen environment.
arXiv Detail & Related papers (2019-11-23T07:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.