Learning to Ignore: Long Document Coreference with Bounded Memory Neural
Networks
- URL: http://arxiv.org/abs/2010.02807v3
- Date: Tue, 17 Nov 2020 02:31:30 GMT
- Title: Learning to Ignore: Long Document Coreference with Bounded Memory Neural
Networks
- Authors: Shubham Toshniwal, Sam Wiseman, Allyson Ettinger, Karen Livescu, Kevin
Gimpel
- Abstract summary: We argue that keeping all entities in memory is unnecessary, and we propose a memory-augmented neural network that tracks only a small bounded number of entities at a time.
We show that (a) the model remains competitive with models with high memory and computational requirements on OntoNotes and LitBank, and (b) the model learns an efficient memory management strategy easily outperforming a rule-based strategy.
- Score: 65.3963282551994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long document coreference resolution remains a challenging task due to the
large memory and runtime requirements of current models. Recent work doing
incremental coreference resolution using just the global representation of
entities shows practical benefits but requires keeping all entities in memory,
which can be impractical for long documents. We argue that keeping all entities
in memory is unnecessary, and we propose a memory-augmented neural network that
tracks only a small bounded number of entities at a time, thus guaranteeing a
linear runtime in length of document. We show that (a) the model remains
competitive with models with high memory and computational requirements on
OntoNotes and LitBank, and (b) the model learns an efficient memory management
strategy easily outperforming a rule-based strategy.
Related papers
- B'MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic and Fading Memory [91.81390121042192]
We develop a class of models called B'MOJO to seamlessly combine eidetic and fading memory within an composable module.
B'MOJO's ability to modulate eidetic and fading memory results in better inference on longer sequences tested up to 32K tokens.
arXiv Detail & Related papers (2024-07-08T18:41:01Z) - CAMELoT: Towards Large Language Models with Training-Free Consolidated
Associative Memory [38.429707659685974]
Large Language Models (LLMs) struggle to handle long input sequences due to high memory and runtime costs.
We introduce an associative memory module which can be coupled to any pre-trained (frozen) attention-based LLM without re-training.
This architecture, which we call CAMELoT, demonstrates superior performance even with a tiny context window of 128 tokens.
arXiv Detail & Related papers (2024-02-21T01:00:17Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin
Memory Model [137.50614198301733]
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores.
We develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores.
XMem greatly exceeds state-of-the-art performance on long-video datasets.
arXiv Detail & Related papers (2022-07-14T17:59:37Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Semantically Constrained Memory Allocation (SCMA) for Embedding in
Efficient Recommendation Systems [27.419109620575313]
A key challenge for deep learning models is to work with millions of categorical classes or tokens.
We propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information.
We demonstrate a significant reduction in the memory footprint while maintaining performance.
arXiv Detail & Related papers (2021-02-24T19:55:49Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.