Dif-MAML: Decentralized Multi-Agent Meta-Learning
- URL: http://arxiv.org/abs/2010.02870v1
- Date: Tue, 6 Oct 2020 16:51:09 GMT
- Title: Dif-MAML: Decentralized Multi-Agent Meta-Learning
- Authors: Mert Kayaalp, Stefan Vlaski, Ali H. Sayed
- Abstract summary: We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
- Score: 54.39661018886268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of meta-learning is to exploit the knowledge obtained from
observed tasks to improve adaptation to unseen tasks. As such, meta-learners
are able to generalize better when they are trained with a larger number of
observed tasks and with a larger amount of data per task. Given the amount of
resources that are needed, it is generally difficult to expect the tasks, their
respective data, and the necessary computational capacity to be available at a
single central location. It is more natural to encounter situations where these
resources are spread across several agents connected by some graph topology.
The formalism of meta-learning is actually well-suited to this decentralized
setting, where the learner would be able to benefit from information and
computational power spread across the agents. Motivated by this observation, in
this work, we propose a cooperative fully-decentralized multi-agent
meta-learning algorithm, referred to as Diffusion-based MAML or Dif-MAML.
Decentralized optimization algorithms are superior to centralized
implementations in terms of scalability, avoidance of communication
bottlenecks, and privacy guarantees. The work provides a detailed theoretical
analysis to show that the proposed strategy allows a collection of agents to
attain agreement at a linear rate and to converge to a stationary point of the
aggregate MAML objective even in non-convex environments. Simulation results
illustrate the theoretical findings and the superior performance relative to
the traditional non-cooperative setting.
Related papers
- DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models [21.85879890198875]
Decentralized Iterative Merging-And-Training (DIMAT) is a novel decentralized deep learning algorithm.
We show that DIMAT attains faster and higher initial gain in accuracy with independent and identically distributed (IID) and non-IID data, incurring lower communication overhead.
This DIMAT paradigm presents a new opportunity for the future decentralized learning, enhancing its adaptability to real-world with sparse lightweight communication computation.
arXiv Detail & Related papers (2024-04-11T18:34:29Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning with a Use-Case in Resource Allocation in Communication Networks [11.182443036683225]
Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning signal processing.
This paper specifically focuses on a scenario where agents collaborate towards a common task.
Agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward.
arXiv Detail & Related papers (2023-11-08T11:12:27Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
We propose Maximum Entropy Coding (MEC) as a principled objective that explicitly optimize on the structure of the representation.
MEC learns a more generalizable representation than previous methods based on specific pretext tasks.
It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking.
arXiv Detail & Related papers (2022-10-20T17:58:30Z) - Mean-Field Multi-Agent Reinforcement Learning: A Decentralized Network
Approach [6.802025156985356]
This paper proposes a framework called localized training and decentralized execution to study MARL with network of states.
The key idea is to utilize the homogeneity of agents and regroup them according to their states, thus the formulation of a networked Markov decision process.
arXiv Detail & Related papers (2021-08-05T16:52:36Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Energy-Efficient and Federated Meta-Learning via Projected Stochastic
Gradient Ascent [79.58680275615752]
We propose an energy-efficient federated meta-learning framework.
We assume each task is owned by a separate agent, so a limited number of tasks is used to train a meta-model.
arXiv Detail & Related papers (2021-05-31T08:15:44Z) - Agent-Centric Representations for Multi-Agent Reinforcement Learning [12.577354830985012]
We investigate whether object-centric representations are also beneficial in the fully cooperative multi-agent reinforcement learning setting.
Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm.
We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D.
arXiv Detail & Related papers (2021-04-19T15:43:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.