A Contrastive Learning Approach for Training Variational Autoencoder
Priors
- URL: http://arxiv.org/abs/2010.02917v3
- Date: Wed, 3 Nov 2021 20:01:38 GMT
- Title: A Contrastive Learning Approach for Training Variational Autoencoder
Priors
- Authors: Jyoti Aneja, Alexander Schwing, Jan Kautz, Arash Vahdat
- Abstract summary: Variational autoencoders (VAEs) are one of the powerful likelihood-based generative models with applications in many domains.
One explanation for VAEs' poor generative quality is the prior hole problem: the prior distribution fails to match the aggregate approximate posterior.
We propose an energy-based prior defined by the product of a base prior distribution and a reweighting factor, designed to bring the base closer to the aggregate posterior.
- Score: 137.62674958536712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational autoencoders (VAEs) are one of the powerful likelihood-based
generative models with applications in many domains. However, they struggle to
generate high-quality images, especially when samples are obtained from the
prior without any tempering. One explanation for VAEs' poor generative quality
is the prior hole problem: the prior distribution fails to match the aggregate
approximate posterior. Due to this mismatch, there exist areas in the latent
space with high density under the prior that do not correspond to any encoded
image. Samples from those areas are decoded to corrupted images. To tackle this
issue, we propose an energy-based prior defined by the product of a base prior
distribution and a reweighting factor, designed to bring the base closer to the
aggregate posterior. We train the reweighting factor by noise contrastive
estimation, and we generalize it to hierarchical VAEs with many latent variable
groups. Our experiments confirm that the proposed noise contrastive priors
improve the generative performance of state-of-the-art VAEs by a large margin
on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ 256 datasets. Our method is
simple and can be applied to a wide variety of VAEs to improve the expressivity
of their prior distribution.
Related papers
- Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Variational Bayesian Imaging with an Efficient Surrogate Score-based Prior [7.155937118886449]
We consider ill-posed inverse imaging problems in which one aims for a clean image posterior given incomplete or noisy measurements.
Recent work turned score-based diffusion models into principled priors for solving ill-posed imaging problems.
Our proposed surrogate prior is based on the evidence lower bound of a score-based diffusion model.
arXiv Detail & Related papers (2023-09-05T04:55:10Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Posterior samples of source galaxies in strong gravitational lenses with
score-based priors [107.52670032376555]
We use a score-based model to encode the prior for the inference of undistorted images of background galaxies.
We show how the balance between the likelihood and the prior meet our expectations in an experiment with out-of-distribution data.
arXiv Detail & Related papers (2022-11-07T19:00:42Z) - Exponentially Tilted Gaussian Prior for Variational Autoencoder [3.52359746858894]
Recent studies show that probabilistic generative models can perform poorly on this task.
We propose the exponentially tilted Gaussian prior distribution for the Variational Autoencoder (VAE)
We show that our model produces high quality image samples which are more crisp than that of a standard Gaussian VAE.
arXiv Detail & Related papers (2021-11-30T18:28:19Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
In a blind setting with unknown degradations, a good prior remains crucial.
We propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation.
To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems.
arXiv Detail & Related papers (2020-09-09T21:40:11Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
We present Hierarchical Empirical Bayes Autoencoder (HEBAE), a computationally stable framework for probabilistic generative models.
Our key contributions are two-fold. First, we make gains by placing a hierarchical prior over the encoding distribution, enabling us to adaptively balance the trade-off between minimizing the reconstruction loss function and avoiding over-regularization.
arXiv Detail & Related papers (2020-07-20T18:18:39Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.