Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components
- URL: http://arxiv.org/abs/2010.03135v2
- Date: Sun, 28 Feb 2021 20:50:46 GMT
- Title: Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components
- Authors: Junwen Bai, Weiran Wang, Yingbo Zhou, Caiming Xiong
- Abstract summary: We propose a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space.
We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step.
We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.
- Score: 96.42805872177067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Deep Autoencoding Predictive Components (DAPC) -- a
self-supervised representation learning method for sequence data, based on the
intuition that useful representations of sequence data should exhibit a simple
structure in the latent space. We encourage this latent structure by maximizing
an estimate of predictive information of latent feature sequences, which is the
mutual information between past and future windows at each time step. In
contrast to the mutual information lower bound commonly used by contrastive
learning, the estimate of predictive information we adopt is exact under a
Gaussian assumption. Additionally, it can be computed without negative
sampling. To reduce the degeneracy of the latent space extracted by powerful
encoders and keep useful information from the inputs, we regularize predictive
information learning with a challenging masked reconstruction loss. We
demonstrate that our method recovers the latent space of noisy dynamical
systems, extracts predictive features for forecasting tasks, and improves
automatic speech recognition when used to pretrain the encoder on large amounts
of unlabeled data.
Related papers
- XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Custom DNN using Reward Modulated Inverted STDP Learning for Temporal
Pattern Recognition [0.0]
Temporal spike recognition plays a crucial role in various domains, including anomaly detection, keyword spotting and neuroscience.
This paper presents a novel algorithm for efficient temporal spike pattern recognition on sparse event series data.
arXiv Detail & Related papers (2023-07-15T18:57:27Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
We propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks.
We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems.
Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods.
arXiv Detail & Related papers (2023-02-17T18:18:27Z) - Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs [16.968490007064872]
Applying variational autoencoders (VAEs) to sequential data offers a method for controlled sequence generation, manipulation, and structured representation learning.
We show theoretically that this removes pointwise mutual information provided by the decoder input, which is compensated for by utilizing the latent space.
Compared to uniform dropout on standard text benchmark datasets, our targeted approach increases both sequence performance and the information captured in the latent space.
arXiv Detail & Related papers (2022-09-26T11:21:19Z) - Compressed Predictive Information Coding [6.220929746808418]
We develop a novel information-theoretic framework, Compressed Predictive Information Coding (CPIC), to extract useful representations from dynamic data.
We derive variational bounds of the CPIC loss which induces the latent space to capture information that is maximally predictive.
We demonstrate that CPIC is able to recover the latent space of noisy dynamical systems with low signal-to-noise ratios.
arXiv Detail & Related papers (2022-03-03T22:47:58Z) - Improving Prediction Confidence in Learning-Enabled Autonomous Systems [2.66512000865131]
We utilize a feedback loop between learning-enabled components used for classification and the sensors of an autonomous system in order to improve the confidence of the predictions.
We design a classifier using Inductive Conformal Prediction (ICP) based on a triplet network architecture in order to learn representations that can be used to quantify the similarity between test and training examples.
A feedback loop that queries the sensors for a new input is used to further refine the predictions and increase the classification accuracy.
arXiv Detail & Related papers (2021-10-07T00:40:34Z) - Predicting What You Already Know Helps: Provable Self-Supervised
Learning [60.27658820909876]
Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data.
We show a mechanism exploiting the statistical connections between certain em reconstruction-based pretext tasks that guarantee to learn a good representation.
We prove the linear layer yields small approximation error even for complex ground truth function class.
arXiv Detail & Related papers (2020-08-03T17:56:13Z) - Learning Output Embeddings in Structured Prediction [73.99064151691597]
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension.
A prediction in the original space is computed by solving a pre-image problem.
In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space.
arXiv Detail & Related papers (2020-07-29T09:32:53Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.