Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study
- URL: http://arxiv.org/abs/2010.04049v1
- Date: Thu, 8 Oct 2020 15:14:34 GMT
- Title: Hierarchical Classification of Pulmonary Lesions: A Large-Scale
Radio-Pathomics Study
- Authors: Jiancheng Yang, Mingze Gao, Kaiming Kuang, Bingbing Ni, Yunlang She,
Dong Xie, Chang Chen
- Abstract summary: Diagnosis of pulmonary lesions from computed tomography (CT) is important but challenging for clinical decision making in lung cancer related diseases.
Deep learning has achieved great success in computer aided diagnosis (CADx) area for lung cancer, whereas it suffers from label ambiguity due to the difficulty in the radiological diagnosis.
Considering that invasive pathological analysis serves as the clinical golden standard of lung cancer diagnosis, in this study, we solve the label ambiguity issue via a large-scale radio-pathomics dataset.
This retrospective dataset, named Pulmonary-RadPath, enables development and validation of accurate deep learning systems to predict invasive pathological labels with a non-
- Score: 38.78350161086617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnosis of pulmonary lesions from computed tomography (CT) is important but
challenging for clinical decision making in lung cancer related diseases. Deep
learning has achieved great success in computer aided diagnosis (CADx) area for
lung cancer, whereas it suffers from label ambiguity due to the difficulty in
the radiological diagnosis. Considering that invasive pathological analysis
serves as the clinical golden standard of lung cancer diagnosis, in this study,
we solve the label ambiguity issue via a large-scale radio-pathomics dataset
containing 5,134 radiological CT images with pathologically confirmed labels,
including cancers (e.g., invasive/non-invasive adenocarcinoma, squamous
carcinoma) and non-cancer diseases (e.g., tuberculosis, hamartoma). This
retrospective dataset, named Pulmonary-RadPath, enables development and
validation of accurate deep learning systems to predict invasive pathological
labels with a non-invasive procedure, i.e., radiological CT scans. A
three-level hierarchical classification system for pulmonary lesions is
developed, which covers most diseases in cancer-related diagnosis. We explore
several techniques for hierarchical classification on this dataset, and propose
a Leaky Dense Hierarchy approach with proven effectiveness in experiments. Our
study significantly outperforms prior arts in terms of data scales (6x larger),
disease comprehensiveness and hierarchies. The promising results suggest the
potentials to facilitate precision medicine.
Related papers
- Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
This research aims to bridge the gap by providing publicly accessible datasets and reliable tools for medical diagnosis.
We curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients.
These promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
arXiv Detail & Related papers (2024-06-26T06:39:11Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
We re-extract disease labels from CXR reports to make them more realistic by considering disease severity and uncertainty in classification.
Our experimental results show that models considering disease severity and uncertainty outperform previous state-of-the-art methods.
arXiv Detail & Related papers (2023-09-06T19:19:41Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - Towards Reliable and Explainable AI Model for Solid Pulmonary Nodule
Diagnosis [20.510918720980467]
Lung cancer has the highest mortality rate of deadly cancers in the world.
Computer-aided diagnosis (CAD) systems have been developed to assist radiologists in nodule detection and diagnosis.
Lack of model reliability and interpretability remains a major obstacle for its large-scale clinical application.
arXiv Detail & Related papers (2022-04-08T08:21:00Z) - A Precision Diagnostic Framework of Renal Cell Carcinoma on Whole-Slide
Images using Deep Learning [4.823436898659051]
A deep convolutional neural network (InceptionV3) was trained on the high-quality annotated dataset of The Cancer Genome Atlas.
Our framework can help pathologists in the detection of cancer region and classification of subtypes and grades, which could be applied to any cancer type.
arXiv Detail & Related papers (2021-10-26T12:53:25Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
Pneumonia is the leading cause of death among young children and one of the top mortality causes worldwide.
Computer-aided diagnosis systems showed the potential for improving diagnostic accuracy.
We develop the computational approach for pneumonia regions detection based on single-shot detectors, squeeze-and-excitation deep convolution neural networks, augmentations and multi-task learning.
arXiv Detail & Related papers (2020-05-28T10:54:34Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.