MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
- URL: http://arxiv.org/abs/2010.04062v1
- Date: Thu, 8 Oct 2020 15:30:17 GMT
- Title: MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
- Authors: Jiancheng Yang, Jiajun Chen, Kaiming Kuang, Tiancheng Lin, Junjun He,
Bingbing Ni
- Abstract summary: This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
- Score: 58.0291320452122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting clinical outcome is remarkably important but challenging. Research
efforts have been paid on seeking significant biomarkers associated with the
therapy response or/and patient survival. However, these biomarkers are
generally costly and invasive, and possibly dissatifactory for novel therapy.
On the other hand, multi-modal, heterogeneous, unaligned temporal data is
continuously generated in clinical practice. This paper aims at a unified deep
learning approach to predict patient prognosis and therapy response, with
easily accessible data, e.g., radiographics, laboratory and clinical
information. Prior arts focus on modeling single data modality, or ignore the
temporal changes. Importantly, the clinical time series is asynchronous in
practice, i.e., recorded with irregular intervals. In this study, we formalize
the prognosis modeling as a multi-modal asynchronous time series classification
task, and propose a MIA-Prognosis framework with Measurement, Intervention and
Assessment (MIA) information to predict therapy response, where a Simple
Temporal Attention (SimTA) module is developed to process the asynchronous time
series. Experiments on synthetic dataset validate the superiory of SimTA over
standard RNN-based approaches. Furthermore, we experiment the proposed method
on an in-house, retrospective dataset of real-world non-small cell lung cancer
patients under anti-PD-1 immunotherapy. The proposed method achieves promising
performance on predicting the immunotherapy response. Notably, our predictive
model could further stratify low-risk and high-risk patients in terms of
long-term survival.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Probabilistic Temporal Prediction of Continuous Disease Trajectories and Treatment Effects Using Neural SDEs [6.5527554277858275]
We present the first causal temporal framework to model the continuous temporal evolution of disease progression via Neural Differential Equations (NSDE)
Our results present the first successful uncertainty-based causal Deep Learning (DL) model to accurately predict future patient MS disability (e.g. EDSS) and treatment effects.
arXiv Detail & Related papers (2024-06-18T17:22:55Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
We show that informative sampling can prohibit accurate estimation of treatment outcomes if not properly accounted for.
We present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting.
We propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs.
arXiv Detail & Related papers (2023-06-07T08:51:06Z) - SCouT: Synthetic Counterfactuals via Spatiotemporal Transformers for
Actionable Healthcare [6.431557011732579]
The Synthetic Control method has pioneered a class of powerful data-driven techniques to estimate the counterfactual reality of a unit from donor units.
At its core, the technique involves a linear model fitted on the pre-intervention period that combines donor outcomes to yield the counterfactual.
We propose an approach to use localtemporal information before the onset of the intervention as a promising way to estimate the counterfactual sequence.
arXiv Detail & Related papers (2022-07-09T07:00:17Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - Synthesizing time-series wound prognosis factors from electronic medical
records using generative adversarial networks [0.0]
Time series medical generative adversarial networks (GANs) were developed to generate synthetic wound prognosis factors.
Conditional training strategies were utilized to enhance training and generate classified data in terms of healing or non-healing.
arXiv Detail & Related papers (2021-05-03T20:26:48Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Integrating Physiological Time Series and Clinical Notes with Deep
Learning for Improved ICU Mortality Prediction [21.919977518774015]
We study how physiological time series data and clinical notes can be integrated into a unified mortality prediction model.
Our results show that a late fusion approach can provide a statistically significant improvement in prediction mortality over using individual modalities in isolation.
arXiv Detail & Related papers (2020-03-24T18:25:49Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.