Generalized Few-shot Semantic Segmentation
- URL: http://arxiv.org/abs/2010.05210v4
- Date: Tue, 31 May 2022 07:01:12 GMT
- Title: Generalized Few-shot Semantic Segmentation
- Authors: Zhuotao Tian, Xin Lai, Li Jiang, Shu Liu, Michelle Shu, Hengshuang
Zhao, Jiaya Jia
- Abstract summary: We introduce a new benchmark called Generalized Few-Shot Semantic (GFS-Seg) to analyze the ability of simultaneously segmenting the novel categories.
It is the first study showing that previous representative state-of-the-art generalizations fall short in GFS-Seg.
We propose the Context-Aware Prototype Learning (CAPL) that significantly improves performance by 1) leveraging the co-occurrence prior knowledge from support samples, and 2) dynamically enriching contextual information to the conditioned, on the content of each query image.
- Score: 68.69434831359669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training semantic segmentation models requires a large amount of finely
annotated data, making it hard to quickly adapt to novel classes not satisfying
this condition. Few-Shot Segmentation (FS-Seg) tackles this problem with many
constraints. In this paper, we introduce a new benchmark, called Generalized
Few-Shot Semantic Segmentation (GFS-Seg), to analyze the generalization ability
of simultaneously segmenting the novel categories with very few examples and
the base categories with sufficient examples. It is the first study showing
that previous representative state-of-the-art FS-Seg methods fall short in
GFS-Seg and the performance discrepancy mainly comes from the constrained
setting of FS-Seg. To make GFS-Seg tractable, we set up a GFS-Seg baseline that
achieves decent performance without structural change on the original model.
Then, since context is essential for semantic segmentation, we propose the
Context-Aware Prototype Learning (CAPL) that significantly improves performance
by 1) leveraging the co-occurrence prior knowledge from support samples, and 2)
dynamically enriching contextual information to the classifier, conditioned on
the content of each query image. Both two contributions are experimentally
shown to have substantial practical merit. Extensive experiments on Pascal-VOC
and COCO manifest the effectiveness of CAPL, and CAPL generalizes well to
FS-Seg by achieving competitive performance. Code is available at
https://github.com/dvlab-research/GFS-Seg.
Related papers
- Memory-guided Network with Uncertainty-based Feature Augmentation for Few-shot Semantic Segmentation [12.653336728447654]
We propose a class-shared memory (CSM) module consisting of a set of learnable memory vectors.
These memory vectors learn elemental object patterns from base classes during training whilst re-encoding query features during both training and inference.
We integrate CSM and UFA into representative FSS works, with experimental results on the widely-used PASCAL-5$i$ and COCO-20$i$ datasets.
arXiv Detail & Related papers (2024-06-01T19:53:25Z) - Few-Shot Learning for Annotation-Efficient Nucleus Instance Segmentation [50.407071700154674]
We propose to formulate annotation-efficient nucleus instance segmentation from the perspective of few-shot learning (FSL)
Our work was motivated by that, with the prosperity of computational pathology, an increasing number of fully-annotated datasets are publicly accessible.
Extensive experiments on a couple of publicly accessible datasets demonstrate that SGFSIS can outperform other annotation-efficient learning baselines.
arXiv Detail & Related papers (2024-02-26T03:49:18Z) - Prototypical Kernel Learning and Open-set Foreground Perception for
Generalized Few-shot Semantic Segmentation [7.707161030443157]
Generalized Few-shot Semantic (GFSS) extends Few-shot Semantic aggregation to segment unseen classes and seen classes during evaluation.
We address the aforementioned problems by jointing the prototypical kernel learning and open-set perception.
In addition, a foreground contextual perception module cooperating with conditional bias based inference is adopted to perform class-agnostic as well as open-set foreground detection.
arXiv Detail & Related papers (2023-08-09T13:38:52Z) - Harmonizing Base and Novel Classes: A Class-Contrastive Approach for
Generalized Few-Shot Segmentation [78.74340676536441]
We propose a class contrastive loss and a class relationship loss to regulate prototype updates and encourage a large distance between prototypes.
Our proposed approach achieves new state-of-the-art performance for the generalized few-shot segmentation task on PASCAL VOC and MS COCO datasets.
arXiv Detail & Related papers (2023-03-24T00:30:25Z) - Generalized Few-Shot Continual Learning with Contrastive Mixture of
Adapters [59.82088750033897]
We set up a Generalized FSCL (GFSCL) protocol involving both class- and domain-incremental situations.
We find that common continual learning methods have poor generalization ability on unseen domains.
In this way, we propose a rehearsal-free framework based on Vision Transformer (ViT) named Contrastive Mixture of Adapters (CMoA)
arXiv Detail & Related papers (2023-02-12T15:18:14Z) - Few-shot Semantic Segmentation with Support-induced Graph Convolutional
Network [28.46908214462594]
Few-shot semantic segmentation (FSS) aims to achieve novel objects segmentation with only a few annotated samples.
We propose a Support-induced Graph Convolutional Network (SiGCN) to explicitly excavate latent context structure in query images.
arXiv Detail & Related papers (2023-01-09T08:00:01Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.