InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative
Tweet Extraction
- URL: http://arxiv.org/abs/2010.05327v1
- Date: Sun, 11 Oct 2020 19:31:18 GMT
- Title: InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative
Tweet Extraction
- Authors: Hansi Hettiarachchi, Tharindu Ranasinghe
- Abstract summary: WNUT-2020 Task 2 was organised to recognise informative tweets from noise tweets.
In this paper, we present our approach to tackle the task objective using transformers.
- Score: 9.710464466895521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying informative tweets is an important step when building information
extraction systems based on social media. WNUT-2020 Task 2 was organised to
recognise informative tweets from noise tweets. In this paper, we present our
approach to tackle the task objective using transformers. Overall, our approach
achieves 10th place in the final rankings scoring 0.9004 F1 score for the test
set.
Related papers
- ThangDLU at #SMM4H 2024: Encoder-decoder models for classifying text data on social disorders in children and adolescents [49.00494558898933]
This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop.
Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety.
Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children.
We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets.
arXiv Detail & Related papers (2024-04-30T17:06:20Z) - Exploring Meta Information for Audio-based Zero-shot Bird Classification [113.17261694996051]
This study investigates how meta-information can improve zero-shot audio classification.
We use bird species as an example case study due to the availability of rich and diverse meta-data.
arXiv Detail & Related papers (2023-09-15T13:50:16Z) - Toward Efficient Language Model Pretraining and Downstream Adaptation
via Self-Evolution: A Case Study on SuperGLUE [203.65227947509933]
This report describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard.
SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks.
arXiv Detail & Related papers (2022-12-04T15:36:18Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English-German.
Based on the Transformer, we apply several effective variants.
Our systems achieve 0.810 and 0.946 COMET scores.
arXiv Detail & Related papers (2022-11-28T02:35:04Z) - Overview of Abusive and Threatening Language Detection in Urdu at FIRE
2021 [50.591267188664666]
We present two shared tasks of abusive and threatening language detection for the Urdu language.
We present two manually annotated datasets containing tweets labelled as (i) Abusive and Non-Abusive, and (ii) Threatening and Non-Threatening.
For both subtasks, m-Bert based transformer model showed the best performance.
arXiv Detail & Related papers (2022-07-14T07:38:13Z) - Twitter-COMMs: Detecting Climate, COVID, and Military Multimodal
Misinformation [83.2079454464572]
This paper describes our approach to the Image-Text Inconsistency Detection challenge of the DARPA Semantic Forensics (SemaFor) Program.
We collect Twitter-COMMs, a large-scale multimodal dataset with 884k tweets relevant to the topics of Climate Change, COVID-19, and Military Vehicles.
We train our approach, based on the state-of-the-art CLIP model, leveraging automatically generated random and hard negatives.
arXiv Detail & Related papers (2021-12-16T03:37:20Z) - NIT COVID-19 at WNUT-2020 Task 2: Deep Learning Model RoBERTa for
Identify Informative COVID-19 English Tweets [0.0]
This paper presents the model submitted by the NIT_COVID-19 team for identified informative COVID-19 English tweets at WNUT-2020 Task2.
The performance achieved by the proposed model for shared task WNUT 2020 Task2 is 89.14% in the F1-score metric.
arXiv Detail & Related papers (2020-11-11T05:20:39Z) - Detection of COVID-19 informative tweets using RoBERTa [5.564705758320338]
We present our work to detect informative Covid-19 English tweets using RoBERTa model as a part of the W-NUT workshop 2020.
We show the efficacy of our model on a public dataset with an F1-score of 0.89 on the validation dataset and 0.87 on the leaderboard.
arXiv Detail & Related papers (2020-10-21T18:43:13Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
We describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets.
Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent advances in pre-trained language models.
Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.
arXiv Detail & Related papers (2020-09-08T16:29:25Z) - UIT-HSE at WNUT-2020 Task 2: Exploiting CT-BERT for Identifying COVID-19
Information on the Twitter Social Network [2.7528170226206443]
In this paper, we present our results at the W-NUT 2020 Shared Task 2: Identification of Informative COVID-19 English Tweets.
We propose our simple but effective approach using the transformer-based models based on COVID-Twitter-BERT (CT-BERT) with different fine-tuning techniques.
As a result, we achieve the F1-Score of 90.94% with the third place on the leaderboard of this task which attracted 56 submitted teams in total.
arXiv Detail & Related papers (2020-09-07T08:20:31Z) - EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with
Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets [0.0]
We present our submission for WNUT Task 2: Identification of informative COVID-19 English Tweets.
Our most successful model is an ensemble of transformers, including RoBERTa, XLNet, and BERTweet trained in a Semi-Supervised Learning (SSL) setting.
The proposed system achieves an F1 score of 0.9011 on the test set (ranking 7th on the leaderboard) and shows significant gains in performance compared to a system using FastText embeddings.
arXiv Detail & Related papers (2020-09-06T15:57:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.