Face Mask Assistant: Detection of Face Mask Service Stage Based on
Mobile Phone
- URL: http://arxiv.org/abs/2010.06421v1
- Date: Fri, 9 Oct 2020 08:49:52 GMT
- Title: Face Mask Assistant: Detection of Face Mask Service Stage Based on
Mobile Phone
- Authors: Yuzhen Chen, Menghan Hu, Chunjun Hua, Guangtao Zhai, Jian Zhang,
Qingli Li, Simon X. Yang
- Abstract summary: Syndrome coronaviruses 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets.
To curb its spread at the source, wearing masks is a convenient and effective measure.
We propose a detection system based on the mobile phone.
- Score: 35.26022029969275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronavirus Disease 2019 (COVID-19) has spread all over the world since it
broke out massively in December 2019, which has caused a large loss to the
whole world. Both the confirmed cases and death cases have reached a relatively
frightening number. Syndrome coronaviruses 2 (SARS-CoV-2), the cause of
COVID-19, can be transmitted by small respiratory droplets. To curb its spread
at the source, wearing masks is a convenient and effective measure. In most
cases, people use face masks in a high-frequent but short-time way. Aimed at
solving the problem that we don't know which service stage of the mask belongs
to, we propose a detection system based on the mobile phone. We first extract
four features from the GLCMs of the face mask's micro-photos. Next, a
three-result detection system is accomplished by using KNN algorithm. The
results of validation experiments show that our system can reach a precision of
82.87% (standard deviation=8.5%) on the testing dataset. In future work, we
plan to expand the detection objects to more mask types. This work demonstrates
that the proposed mobile microscope system can be used as an assistant for face
mask being used, which may play a positive role in fighting against COVID-19.
Related papers
- Real-Time Mask Detection Based on SSD-MobileNetV2 [2.538209532048867]
An excellent automatic real-time mask detection system can reduce a lot of work pressure for relevant staff.
Existing mask detection approaches are resource-intensive and do not achieve a good balance between speed and accuracy.
In this paper, we propose a new architecture for mask detection.
arXiv Detail & Related papers (2022-08-29T01:59:22Z) - Development of a face mask detection pipeline for mask-wearing
monitoring in the era of the COVID-19 pandemic: A modular approach [0.0]
During the SARS-Cov-2 pandemic, mask-wearing became an effective tool to prevent spreading and contracting the virus.
The ability to monitor the mask-wearing rate in the population would be useful for determining public health strategies against the virus.
We present a two-step face mask detection approach consisting of two separate modules: 1) face detection and alignment and 2) face mask classification.
arXiv Detail & Related papers (2021-12-30T12:32:33Z) - Masked Face Recognition Challenge: The InsightFace Track Report [79.77020394722788]
During the COVID-19 coronavirus epidemic, almost everyone wears a facial mask, which poses a huge challenge to deep face recognition.
In this workshop, we focus on bench-marking deep face recognition methods under the existence of facial masks.
arXiv Detail & Related papers (2021-08-18T15:14:44Z) - Masked Face Recognition Challenge: The WebFace260M Track Report [81.57455766506197]
Face Bio-metrics under COVID Workshop and Masked Face Recognition Challenge in ICCV 2021.
WebFace260M Track aims to push the frontiers of practical MFR.
In the first phase of WebFace260M Track, 69 teams (total 833 solutions) participate in the challenge.
There are second phase of the challenge till October 1, 2021 and on-going leaderboard.
arXiv Detail & Related papers (2021-08-16T15:51:51Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - A Computer Vision System to Help Prevent the Transmission of COVID-19 [79.62140902232628]
The COVID-19 pandemic affects every area of daily life globally.
Health organizations advise social distancing, wearing face mask, and avoiding touching face.
We developed a deep learning-based computer vision system to help prevent the transmission of COVID-19.
arXiv Detail & Related papers (2021-03-16T00:00:04Z) - Application of Yolo on Mask Detection Task [1.941730292017383]
Strict mask-wearing policies have been met with not only public sensation but also practical difficulty.
Existing technology to help automate mask checking uses deep learning models on real-time surveillance camera footages.
Our research proposes a new approach to mask detection by replacing Mask-R-CNN with a more efficient model "YOLO"
arXiv Detail & Related papers (2021-02-10T12:34:47Z) - BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and
Positioning Predictor on Edge Devices [63.56630165340053]
Face masks offer an effective solution in healthcare for bi-directional protection against air-borne diseases.
CNNs offer an excellent solution for face recognition and classification of correct mask wearing and positioning.
CNNs can be used at entrances to corporate buildings, airports, shopping areas, and other indoor locations, to mitigate the spread of the virus.
arXiv Detail & Related papers (2021-02-06T00:14:06Z) - Multi-Stage CNN Architecture for Face Mask Detection [0.0]
We introduce a Deep Learning based system that can detect instances where face masks are not used properly.
Our system consists of a dual-stage Convolutional Neural Network (CNN) architecture capable of detecting masked and unmasked faces.
This will help track safety violations, promote the use of face masks, and ensure a safe working environment.
arXiv Detail & Related papers (2020-09-16T12:23:21Z) - RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control
of the COVID-19 Pandemic [1.2691047660244335]
One effective strategy to prevent infection for people is to wear masks in public places.
Certain public service providers require clients to use their services only if they properly wear masks.
There are, however, only a few research studies on automatic face mask detection.
We proposed RetinaFaceMask, the first high-performance single stage face mask detector.
arXiv Detail & Related papers (2020-05-08T10:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.