Local Differential Privacy for Bayesian Optimization
- URL: http://arxiv.org/abs/2010.06709v1
- Date: Tue, 13 Oct 2020 21:50:09 GMT
- Title: Local Differential Privacy for Bayesian Optimization
- Authors: Xingyu Zhou and Jian Tan
- Abstract summary: We consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee.
Specifically, the rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret.
We present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism.
- Score: 12.05395706770007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the increasing concern about privacy in nowadays data-intensive
online learning systems, we consider a black-box optimization in the
nonparametric Gaussian process setting with local differential privacy (LDP)
guarantee. Specifically, the rewards from each user are further corrupted to
protect privacy and the learner only has access to the corrupted rewards to
minimize the regret. We first derive the regret lower bounds for any LDP
mechanism and any learning algorithm. Then, we present three almost optimal
algorithms based on the GP-UCB framework and Laplace DP mechanism. In this
process, we also propose a new Bayesian optimization (BO) method (called
MoMA-GP-UCB) based on median-of-means techniques and kernel approximations,
which complements previous BO algorithms for heavy-tailed payoffs with a
reduced complexity. Further, empirical comparisons of different algorithms on
both synthetic and real-world datasets highlight the superior performance of
MoMA-GP-UCB in both private and non-private scenarios.
Related papers
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Bring Your Own Algorithm for Optimal Differentially Private Stochastic
Minimax Optimization [44.52870407321633]
holy grail of these settings is to guarantee the optimal trade-off between the privacy and the excess population loss.
We provide a general framework for solving differentially private minimax optimization (DP-SMO) problems.
Our framework is inspired from the recently proposed Phased-ERM method [20] for nonsmooth differentially private convex optimization (DP-SCO)
arXiv Detail & Related papers (2022-06-01T10:03:20Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Iterative Methods for Private Synthetic Data: Unifying Framework and New
Methods [18.317488965846636]
We study private synthetic data generation for query release.
The goal is to construct a sanitized version of a sensitive dataset subject to differential privacy.
Under this framework, we propose two new methods.
arXiv Detail & Related papers (2021-06-14T04:19:35Z) - No-Regret Algorithms for Private Gaussian Process Bandit Optimization [13.660643701487002]
We consider the ubiquitous problem of gaussian process (GP) bandit optimization from the lens of privacy-preserving statistics.
We propose a solution for differentially private GP bandit optimization that combines a uniform kernel approximator with random perturbations.
Our algorithms maintain differential privacy throughout the optimization procedure and critically do not rely explicitly on the sample path for prediction.
arXiv Detail & Related papers (2021-02-24T18:52:24Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.