Joint Constrained Learning for Event-Event Relation Extraction
- URL: http://arxiv.org/abs/2010.06727v2
- Date: Sun, 2 May 2021 21:51:18 GMT
- Title: Joint Constrained Learning for Event-Event Relation Extraction
- Authors: Haoyu Wang, Muhao Chen, Hongming Zhang, Dan Roth
- Abstract summary: We propose a joint constrained learning framework for modeling event-event relations.
Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations.
We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data.
- Score: 94.3499255880101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding natural language involves recognizing how multiple event
mentions structurally and temporally interact with each other. In this process,
one can induce event complexes that organize multi-granular events with
temporal order and membership relations interweaving among them. Due to the
lack of jointly labeled data for these relational phenomena and the restriction
on the structures they articulate, we propose a joint constrained learning
framework for modeling event-event relations. Specifically, the framework
enforces logical constraints within and across multiple temporal and subevent
relations by converting these constraints into differentiable learning
objectives. We show that our joint constrained learning approach effectively
compensates for the lack of jointly labeled data, and outperforms SOTA methods
on benchmarks for both temporal relation extraction and event hierarchy
construction, replacing a commonly used but more expensive global inference
process. We also present a promising case study showing the effectiveness of
our approach in inducing event complexes on an external corpus.
Related papers
- EnriCo: Enriched Representation and Globally Constrained Inference for Entity and Relation Extraction [3.579132482505273]
Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs.
Existing approaches often fall short of two key aspects: richness of representation and coherence in output structure.
In our work, we introduce EnriCo, which mitigates these shortcomings.
arXiv Detail & Related papers (2024-04-18T20:15:48Z) - Enhancing Asynchronous Time Series Forecasting with Contrastive
Relational Inference [21.51753838306655]
Temporal point processes(TPPs) are the standard method for modeling such.
Existing TPP models have focused on the conditional distribution of future events instead of explicitly modeling event interactions, imposing challenges for event predictions.
We propose a novel approach that leverages a Neural Inference (NRI) to learn a graph that infers interactions while simultaneously learning dynamics patterns from observational data.
arXiv Detail & Related papers (2023-09-06T09:47:03Z) - Semantic Structure Enhanced Event Causality Identification [57.26259734944247]
Event Causality Identification (ECI) aims to identify causal relations between events in unstructured texts.
Existing methods underestimate two kinds of semantic structures vital to the ECI task, namely, event-centric structure and event-associated structure.
arXiv Detail & Related papers (2023-05-22T07:42:35Z) - MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference,
Temporal, Causal, and Subevent Relation Extraction [78.61546292830081]
We construct a large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes.
It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations.
Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances.
arXiv Detail & Related papers (2022-11-14T13:34:49Z) - Nonparametric Embeddings of Sparse High-Order Interaction Events [21.758306786651772]
High-order interaction events are common in real-world applications.
We propose Non Embeddings of Sparse High-order interaction events.
We develop an efficient, scalable model inference algorithm.
arXiv Detail & Related papers (2022-07-08T01:25:34Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution.
We propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention.
Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.
arXiv Detail & Related papers (2022-05-04T17:56:48Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.