Lightweight Mediated Semi-Quantum Secret Sharing Protocol
- URL: http://arxiv.org/abs/2010.06911v2
- Date: Fri, 12 Feb 2021 02:14:09 GMT
- Title: Lightweight Mediated Semi-Quantum Secret Sharing Protocol
- Authors: Chia-Wei Tsai, Zong-Liang Zhang, Bo-Cheng Jian, Yao-Chung Chang
- Abstract summary: The proposed MSQSS protocol adopts the one-way quantum communication and thus it is free from the Trojan Horse attacks.
The security analysis is given for proving that the proposed protocol can be against the collective attack.
- Score: 1.3419982985275638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the exiting semi-quantum secret sharing protocol have two challenges
including (1) the dealer must be the quantum user, and (2) the classical users
must equip with the Trojan Horse detectors, this study wants to propose a novel
mediate semi-quantum secret sharing (MSQSS) protocol to let a classical dealer
can share his/her secrets to the classical agents with the help of a dishonest
third-party (TP). The proposed MSQSS protocol adopts the one-way quantum
communication and thus it is free from the Trojan Horse attacks. Furthermore,
the security analysis is given for proving that the proposed protocol can be
against the collective attack. Comparing to the exiting SQSS protocols, the
proposed MSQSS protocol is more lightweight and more practical.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Dynamic Quantum Group Key Agreement via Tree Key Graphs [36.47236890715043]
We propose two dynamic Quantum Group Key Agreement protocols for a join or leave request in group communications.
The number of qubits required per join or leave only increases logarithmically with the group size.
arXiv Detail & Related papers (2023-12-07T07:45:59Z) - Quantum Two-Way Communication Protocol Beyond Superdense Coding [36.25599253958745]
We introduce a generalization of one-way superdense coding to two-way communication protocols for transmitting classical bits by using entangled quantum pairs.
The proposed protocol gives a 50% increase in both data rate and energy efficiency compared to the classical protocol.
arXiv Detail & Related papers (2023-09-06T08:48:07Z) - Semiquantum secret sharing by using x-type states [4.397981844057195]
A semiquantum secret sharing protocol based on x-type states is proposed.
It can accomplish the goal that only when two classical communicants cooperate together can they extract the shared secret key of a quantum communicant.
Detailed security analysis turns out that this protocol is completely robust against an eavesdropper.
arXiv Detail & Related papers (2022-08-03T08:58:45Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Scalable Mediated Semi-quantum Key Distribution [5.548873288570182]
Mediated semi-quantum key distribution (M-SQKD) permits two limited "semi-quantum" or "classical" users to establish a secret key with the help of a third party (TP)
Several protocols have been studied recently for two-party scenarios, but no one has considered M-SQKD for multi-party scenarios.
arXiv Detail & Related papers (2022-05-13T09:21:12Z) - Improved Semi-Quantum Key Distribution with Two Almost-Classical Users [1.827510863075184]
We revisit a mediated semi-quantum key distribution protocol introduced by Massa et al.
We show how this protocol may be extended to improve its efficiency and also its noise tolerance.
We evaluate the protocol's performance in a variety of lossy and noisy channels.
arXiv Detail & Related papers (2022-03-20T14:41:14Z) - Multi-party Semi-quantum Secret Sharing Protocol based on Measure-flip and Reflect Operations [1.3812010983144802]
Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations.
This paper proposes a novel SQSS protocol based on multi-particle GHZ states.
arXiv Detail & Related papers (2021-09-03T08:52:17Z) - Multiparty Mediated Quantum Secret Sharing Protocol [0.0]
The proposed MQSS protocol has addressed two common challenges in the existing semi-quantum secret sharing protocols.
The security analysis has delivered proof to show that the proposed MQSS protocol can avoid the collective attack, the collusion attack, and the Trojan horse attacks.
arXiv Detail & Related papers (2021-02-13T02:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.