Using satellite imagery to understand and promote sustainable
development
- URL: http://arxiv.org/abs/2010.06988v1
- Date: Wed, 23 Sep 2020 05:20:00 GMT
- Title: Using satellite imagery to understand and promote sustainable
development
- Authors: Marshall Burke, Anne Driscoll, David B. Lobell, Stefano Ermon
- Abstract summary: We synthesize the growing literature that uses satellite imagery to understand sustainable development outcomes.
We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution of satellite imagery.
We review recent machine learning approaches to model-building in the context of scarce and noisy training data.
- Score: 87.72561825617062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and comprehensive measurements of a range of sustainable development
outcomes are fundamental inputs into both research and policy. We synthesize
the growing literature that uses satellite imagery to understand these
outcomes, with a focus on approaches that combine imagery with machine
learning. We quantify the paucity of ground data on key human-related outcomes
and the growing abundance and resolution (spatial, temporal, and spectral) of
satellite imagery. We then review recent machine learning approaches to
model-building in the context of scarce and noisy training data, highlighting
how this noise often leads to incorrect assessment of models' predictive
performance. We quantify recent model performance across multiple sustainable
development domains, discuss research and policy applications, explore
constraints to future progress, and highlight key research directions for the
field.
Related papers
- AI Foundation Models in Remote Sensing: A Survey [6.036426846159163]
This paper provides a comprehensive survey of foundation models in the remote sensing domain.
We categorize these models based on their applications in computer vision and domain-specific tasks.
We highlight emerging trends and the significant advancements achieved by these foundation models.
arXiv Detail & Related papers (2024-08-06T22:39:34Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - Spatio-Temporal Graphical Counterfactuals: An Overview [11.616701619068804]
Counteractual is a critical yet challenging topic for artificial intelligence to learn knowledge from data.
Our aim is to investigate a survey to compare thinking and discuss different counterfactual models, theories and approaches.
arXiv Detail & Related papers (2024-07-02T01:34:13Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semantic is a novel task in computer vision, which aims at designing models capable of segmenting new semantic classes with only a few examples.
This paper consists of a comprehensive survey of Few-Shot Semantic, tracing its evolution and exploring various model designs.
arXiv Detail & Related papers (2023-04-12T13:07:37Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - SustainBench: Benchmarks for Monitoring the Sustainable Development
Goals with Machine Learning [63.192289553021816]
Progress toward the United Nations Sustainable Development Goals has been hindered by a lack of data on key environmental and socioeconomic indicators.
Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media.
In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs.
arXiv Detail & Related papers (2021-11-08T18:59:04Z) - Adversarial Text-to-Image Synthesis: A Review [7.593633267653624]
We contextualize the state of the art of adversarial text-to-image synthesis models, their development since their inception five years ago, and propose a taxonomy based on the level of supervision.
We critically examine current strategies to evaluate text-to-image synthesis models, highlight shortcomings, and identify new areas of research, ranging from the development of better datasets and evaluation metrics to possible improvements in architectural design and model training.
This review complements previous surveys on generative adversarial networks with a focus on text-to-image synthesis which we believe will help researchers to further advance the field.
arXiv Detail & Related papers (2021-01-25T09:58:36Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.