Environment Inference for Invariant Learning
- URL: http://arxiv.org/abs/2010.07249v5
- Date: Thu, 15 Jul 2021 17:21:57 GMT
- Title: Environment Inference for Invariant Learning
- Authors: Elliot Creager, J\"orn-Henrik Jacobsen, Richard Zemel
- Abstract summary: We propose EIIL, a framework for domain-invariant learning that incorporates Environment Inference.
We show that EIIL outperforms invariant learning methods on the CMNIST benchmark without using environment labels.
We also establish connections between EIIL and algorithmic fairness, which enables EIIL to improve accuracy and calibration in a fair prediction problem.
- Score: 9.63004099102596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning models that gracefully handle distribution shifts is central to
research on domain generalization, robust optimization, and fairness. A
promising formulation is domain-invariant learning, which identifies the key
issue of learning which features are domain-specific versus domain-invariant.
An important assumption in this area is that the training examples are
partitioned into "domains" or "environments". Our focus is on the more common
setting where such partitions are not provided. We propose EIIL, a general
framework for domain-invariant learning that incorporates Environment Inference
to directly infer partitions that are maximally informative for downstream
Invariant Learning. We show that EIIL outperforms invariant learning methods on
the CMNIST benchmark without using environment labels, and significantly
outperforms ERM on worst-group performance in the Waterbirds and CivilComments
datasets. Finally, we establish connections between EIIL and algorithmic
fairness, which enables EIIL to improve accuracy and calibration in a fair
prediction problem.
Related papers
- Decorr: Environment Partitioning for Invariant Learning and OOD Generalization [10.799855921851332]
Invariant learning methods are aimed at identifying a consistent predictor across multiple environments.
When environments aren't inherent in the data, practitioners must define them manually.
This environment partitioning affects invariant learning's efficacy but remains underdiscussed.
In this paper, we suggest partitioning the dataset into several environments by isolating low-correlation data subsets.
arXiv Detail & Related papers (2022-11-18T06:49:35Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Repeated Environment Inference for Invariant Learning [8.372465442144046]
We focus on the invariant representation notion when the Bayes optimal conditional label distribution is the same across different environments.
Previous work conducts Environment Inference (EI) by maximizing the penalty term from Invariant Risk Minimization (IRM) framework.
We show that this method outperforms baselines on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-07-26T13:07:22Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - On the benefits of representation regularization in invariance based
domain generalization [6.197602794925773]
Domain generalization aims to alleviate such a prediction gap between the observed and unseen environments.
In this paper, we reveal that merely learning invariant representation is vulnerable to the unseen environment.
Our analysis further inspires an efficient regularization method to improve the robustness in domain generalization.
arXiv Detail & Related papers (2021-05-30T13:13:55Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Domain Adaptation in LiDAR Semantic Segmentation by Aligning Class
Distributions [9.581605678437032]
This work addresses the problem of unsupervised domain adaptation for LiDAR semantic segmentation models.
Our approach combines novel ideas on top of the current state-of-the-art approaches and yields new state-of-the-art results.
arXiv Detail & Related papers (2020-10-23T08:52:15Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.