Bayesian Spatio-Temporal Graph Convolutional Network for Traffic
Forecasting
- URL: http://arxiv.org/abs/2010.07498v1
- Date: Thu, 15 Oct 2020 03:41:37 GMT
- Title: Bayesian Spatio-Temporal Graph Convolutional Network for Traffic
Forecasting
- Authors: Jun Fu and Wei Zhou and Zhibo Chen
- Abstract summary: We propose a Bayesian S-temporal ConTemporal Graphal Network (BSTGCN) for traffic prediction.
The graph structure in our network is learned from the physical topology of the road network and traffic data in an end-to-end manner.
We verify the effectiveness of our method on two real-world datasets, and the experimental results demonstrate that BSTGCN attains superior performance compared with state-of-the-art methods.
- Score: 22.277878492878475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In traffic forecasting, graph convolutional networks (GCNs), which model
traffic flows as spatio-temporal graphs, have achieved remarkable performance.
However, existing GCN-based methods heuristically define the graph structure as
the physical topology of the road network, ignoring potential dependence of the
graph structure over traffic data. And the defined graph structure is
deterministic, which lacks investigation of uncertainty. In this paper, we
propose a Bayesian Spatio-Temporal Graph Convolutional Network (BSTGCN) for
traffic prediction. The graph structure in our network is learned from the
physical topology of the road network and traffic data in an end-to-end manner,
which discovers a more accurate description of the relationship among traffic
flows. Moreover, a parametric generative model is proposed to represent the
graph structure, which enhances the generalization capability of GCNs. We
verify the effectiveness of our method on two real-world datasets, and the
experimental results demonstrate that BSTGCN attains superior performance
compared with state-of-the-art methods.
Related papers
- Dynamic Causal Graph Convolutional Network for Traffic Prediction [19.759695727682935]
We propose an approach for predicting traffic that embeds time-varying dynamic network to capture finetemporal patterns of traffic data.
We then use graph convolutional networks to generate traffic forecasts.
Our experimental results on a real traffic dataset demonstrate the superior prediction performance of the proposed method.
arXiv Detail & Related papers (2023-06-12T10:46:31Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Hierarchical Graph Pooling is an Effective Citywide Traffic Condition
Prediction Model [1.321203201549798]
This paper applies two hierarchical graph pooling approaches to the traffic prediction task to reduce graph information redundancy.
The hierarchical graph pooling methods are contrasted with the other baselines on predictive performance.
For the mentioned graph neural networks, this paper compares the predictive effects of different graph network inputs on traffic prediction accuracy.
arXiv Detail & Related papers (2022-09-08T08:12:35Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Spatial-Temporal Interactive Dynamic Graph Convolution Network for
Traffic Forecasting [1.52292571922932]
We propose a neural network-based Spatial-Temporal Interactive Dynamic Graph Convolutional Network (STIDGCN) for traffic forecasting in this paper.
In STIDGCN, we propose an interactive dynamic graph convolution structure, which first divides the sequences at intervals and captures the spatial-temporal dependence of the traffic data simultaneously.
Experiments on four real-world traffic flow datasets demonstrate that STIDGCN outperforms the state-of-the-art baseline.
arXiv Detail & Related papers (2022-05-18T01:59:30Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.