Certifying Neural Network Robustness to Random Input Noise from Samples
- URL: http://arxiv.org/abs/2010.07532v1
- Date: Thu, 15 Oct 2020 05:27:21 GMT
- Title: Certifying Neural Network Robustness to Random Input Noise from Samples
- Authors: Brendon G. Anderson, Somayeh Sojoudi
- Abstract summary: Methods to certify the robustness of neural networks in the presence of input uncertainty are vital in safety-critical settings.
We propose a novel robustness certification method that upper bounds the probability of misclassification when the input noise follows an arbitrary probability distribution.
- Score: 14.191310794366075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Methods to certify the robustness of neural networks in the presence of input
uncertainty are vital in safety-critical settings. Most certification methods
in the literature are designed for adversarial input uncertainty, but
researchers have recently shown a need for methods that consider random
uncertainty. In this paper, we propose a novel robustness certification method
that upper bounds the probability of misclassification when the input noise
follows an arbitrary probability distribution. This bound is cast as a
chance-constrained optimization problem, which is then reformulated using
input-output samples to replace the optimization constraints. The resulting
optimization reduces to a linear program with an analytical solution.
Furthermore, we develop a sufficient condition on the number of samples needed
to make the misclassification bound hold with overwhelming probability. Our
case studies on MNIST classifiers show that this method is able to certify a
uniform infinity-norm uncertainty region with a radius of nearly 50 times
larger than what the current state-of-the-art method can certify.
Related papers
- The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
This paper concerns the optimal (supremum and infimum) uncertainty bounds for systems where the input (or prior) measure is only partially/imperfectly known.
We demonstrate the learning based framework on the uncertainty optimization problem.
We show that the approach can be used to construct maps for the performance certificate and safety in engineering practice.
arXiv Detail & Related papers (2022-12-28T14:30:53Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - Towards Evading the Limits of Randomized Smoothing: A Theoretical
Analysis [74.85187027051879]
We show that it is possible to approximate the optimal certificate with arbitrary precision, by probing the decision boundary with several noise distributions.
This result fosters further research on classifier-specific certification and demonstrates that randomized smoothing is still worth investigating.
arXiv Detail & Related papers (2022-06-03T17:48:54Z) - Kernel Robust Hypothesis Testing [20.78285964841612]
In this paper, uncertainty sets are constructed in a data-driven manner using kernel method.
The goal is to design a test that performs well under the worst-case distributions over the uncertainty sets.
For the Neyman-Pearson setting, the goal is to minimize the worst-case probability of miss detection subject to a constraint on the worst-case probability of false alarm.
arXiv Detail & Related papers (2022-03-23T23:59:03Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
We show that uncertainty for learning from limited number of samples of high-dimensional input data and labels can be obtained by the approximate message passing algorithm.
We discuss how over-confidence can be mitigated by appropriately regularising, and show that cross-validating with respect to the loss leads to better calibration than with the 0/1 error.
arXiv Detail & Related papers (2022-02-07T15:32:07Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
We propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN)
In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent.
This is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model.
arXiv Detail & Related papers (2021-03-17T21:49:53Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Data-Driven Assessment of Deep Neural Networks with Random Input
Uncertainty [14.191310794366075]
We develop a data-driven optimization-based method capable of simultaneously certifying the safety of network outputs and localizing them.
We experimentally demonstrate the efficacy and tractability of the method on a deep ReLU network.
arXiv Detail & Related papers (2020-10-02T19:13:35Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.