Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking
- URL: http://arxiv.org/abs/2010.07785v1
- Date: Thu, 15 Oct 2020 14:21:38 GMT
- Title: Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking
- Authors: Weishi Wang, Shafiq Joty, Steven C.H. Hoi
- Abstract summary: We frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context.
We propose a novel multi-task learning framework that supports efficient encoding through large pretrained models.
Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks.
- Score: 63.15158355071206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While participants in a multi-party multi-turn conversation simultaneously
engage in multiple conversation topics, existing response selection methods are
developed mainly focusing on a two-party single-conversation scenario. Hence,
the prolongation and transition of conversation topics are ignored by current
methods. In this work, we frame response selection as a dynamic topic tracking
task to match the topic between the response and relevant conversation context.
With this new formulation, we propose a novel multi-task learning framework
that supports efficient encoding through large pretrained models with only two
utterances at once to perform dynamic topic disentanglement and response
selection. We also propose Topic-BERT an essential pretraining step to embed
topic information into BERT with self-supervised learning. Experimental results
on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response
selection and topic disentanglement tasks outperforming existing methods by a
good margin.
Related papers
- MP2D: An Automated Topic Shift Dialogue Generation Framework Leveraging
Knowledge Graphs [15.876075659237722]
Multi-Passage to Dialogue (MP2D) generates question-answering datasets with natural topic transitions.
MP2D maps the flow of topics within a dialogue, effectively mirroring the dynamics of human conversation.
This study introduces a novel benchmark for topic shift dialogues, TS-WikiDialog.
arXiv Detail & Related papers (2024-03-09T06:28:48Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Sequential Topic Selection Model with Latent Variable for Topic-Grounded
Dialogue [21.1427816176227]
We propose a novel approach, named Sequential Global Topic Attention (SGTA) to exploit topic transition over all conversations.
Our model outperforms competitive baselines on prediction and generation tasks.
arXiv Detail & Related papers (2022-10-17T07:34:14Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - Topic-Aware Contrastive Learning for Abstractive Dialogue Summarization [41.75442239197745]
This work proposes two topic-aware contrastive learning objectives, namely coherence detection and sub-summary generation objectives.
Experiments on benchmark datasets demonstrate that the proposed simple method significantly outperforms strong baselines.
arXiv Detail & Related papers (2021-09-10T17:03:25Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Weakly-Supervised Neural Response Selection from an Ensemble of
Task-Specialised Dialogue Agents [11.21333474984984]
We model the problem of selecting the best response from a set of responses generated by a heterogeneous set of dialogue agents.
The proposed method is trained to predict a coherent set of responses within a single conversation, considering its own predictions via a curriculum training mechanism.
arXiv Detail & Related papers (2020-05-06T18:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.