Hierarchical Poset Decoding for Compositional Generalization in Language
- URL: http://arxiv.org/abs/2010.07792v1
- Date: Thu, 15 Oct 2020 14:34:26 GMT
- Title: Hierarchical Poset Decoding for Compositional Generalization in Language
- Authors: Yinuo Guo, Zeqi Lin, Jian-Guang Lou, Dongmei Zhang
- Abstract summary: We formalize human language understanding as a structured prediction task where the output is a partially ordered set (poset)
Current encoder-decoder architectures do not take the poset structure of semantics into account properly.
We propose a novel hierarchical poset decoding paradigm for compositional generalization in language.
- Score: 52.13611501363484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formalize human language understanding as a structured prediction task
where the output is a partially ordered set (poset). Current encoder-decoder
architectures do not take the poset structure of semantics into account
properly, thus suffering from poor compositional generalization ability. In
this paper, we propose a novel hierarchical poset decoding paradigm for
compositional generalization in language. Intuitively: (1) the proposed
paradigm enforces partial permutation invariance in semantics, thus avoiding
overfitting to bias ordering information; (2) the hierarchical mechanism allows
to capture high-level structures of posets. We evaluate our proposed decoder on
Compositional Freebase Questions (CFQ), a large and realistic natural language
question answering dataset that is specifically designed to measure
compositional generalization. Results show that it outperforms current
decoders.
Related papers
- Learning Syntax Without Planting Trees: Understanding When and Why Transformers Generalize Hierarchically [74.96551626420188]
Transformers trained on natural language data have been shown to learn its hierarchical structure and generalize to sentences with unseen syntactic structures.
We investigate sources of inductive bias in transformer models and their training that could cause such generalization behavior to emerge.
arXiv Detail & Related papers (2024-04-25T07:10:29Z) - Forming Trees with Treeformers [3.8073142980733]
Many state-of-the-art neural networks models such as Transformers have no explicit hierarchical structure in its architecture.
We introduce Treeformer, a general-purpose encoder module inspired by the CKY algorithm.
Our experiments demonstrate the benefits of incorporating hierarchical structure into the Transformer.
arXiv Detail & Related papers (2022-07-14T14:39:30Z) - Compositional Generalization Requires Compositional Parsers [69.77216620997305]
We compare sequence-to-sequence models and models guided by compositional principles on the recent COGS corpus.
We show structural generalization is a key measure of compositional generalization and requires models that are aware of complex structure.
arXiv Detail & Related papers (2022-02-24T07:36:35Z) - Grounded Graph Decoding Improves Compositional Generalization in
Question Answering [68.72605660152101]
Question answering models struggle to generalize to novel compositions of training patterns, such as longer sequences or more complex test structures.
We propose Grounded Graph Decoding, a method to improve compositional generalization of language representations by grounding structured predictions with an attention mechanism.
Our model significantly outperforms state-of-the-art baselines on the Compositional Freebase Questions (CFQ) dataset, a challenging benchmark for compositional generalization in question answering.
arXiv Detail & Related papers (2021-11-05T17:50:14Z) - Disentangled Sequence to Sequence Learning for Compositional
Generalization [62.954842223732435]
We propose an extension to sequence-to-sequence models which allows us to learn disentangled representations by adaptively re-encoding the source input.
Experimental results on semantic parsing and machine translation empirically show that our proposal yields more disentangled representations and better generalization.
arXiv Detail & Related papers (2021-10-09T22:27:19Z) - Improving Compositional Generalization in Classification Tasks via
Structure Annotations [33.90268697120572]
Humans have a great ability to generalize compositionally, but state-of-the-art neural models struggle to do so.
First, we study ways to convert a natural language sequence-to-sequence dataset to a classification dataset that also requires compositional generalization.
Second, we show that providing structural hints (specifically, providing parse trees and entity links as attention masks for a Transformer model) helps compositional generalization.
arXiv Detail & Related papers (2021-06-19T06:07:27Z) - Compositional Generalization via Semantic Tagging [81.24269148865555]
We propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models.
We show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
arXiv Detail & Related papers (2020-10-22T15:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.