WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
- URL: http://arxiv.org/abs/2010.08232v1
- Date: Fri, 16 Oct 2020 08:28:05 GMT
- Title: WNUT-2020 Task 2: Identification of Informative COVID-19 English Tweets
- Authors: Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi, Mai Hoang Dao, Linh The
Nguyen and Long Doan
- Abstract summary: We describe how we construct a corpus of 10K Tweets and organize the development and evaluation phases for this task.
We present a brief summary of results obtained from the final system evaluation submissions of 55 teams.
- Score: 21.41654078561586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide an overview of the WNUT-2020 shared task on the
identification of informative COVID-19 English Tweets. We describe how we
construct a corpus of 10K Tweets and organize the development and evaluation
phases for this task. In addition, we also present a brief summary of results
obtained from the final system evaluation submissions of 55 teams, finding that
(i) many systems obtain very high performance, up to 0.91 F1 score, (ii) the
majority of the submissions achieve substantially higher results than the
baseline fastText (Joulin et al., 2017), and (iii) fine-tuning pre-trained
language models on relevant language data followed by supervised training
performs well in this task.
Related papers
- HYBRINFOX at CheckThat! 2024 -- Task 1: Enhancing Language Models with Structured Information for Check-Worthiness Estimation [0.8083061106940517]
This paper summarizes the experiments and results of the HYBRINFOX team for the CheckThat! 2024 - Task 1 competition.
We propose an approach enriching Language Models such as RoBERTa with embeddings produced by triples.
arXiv Detail & Related papers (2024-07-04T11:33:54Z) - KIT's Multilingual Speech Translation System for IWSLT 2023 [58.5152569458259]
We describe our speech translation system for the multilingual track of IWSLT 2023.
The task requires translation into 10 languages of varying amounts of resources.
Our cascaded speech system substantially outperforms its end-to-end counterpart on scientific talk translation.
arXiv Detail & Related papers (2023-06-08T16:13:20Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
This report briefly describes our submission Vega v1 on the General Language Understanding Evaluation leaderboard.
GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference.
With our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3.
arXiv Detail & Related papers (2023-02-18T09:26:35Z) - Enhancing Model Performance in Multilingual Information Retrieval with
Comprehensive Data Engineering Techniques [10.57012904999091]
We fine-tune pre-trained multilingual transformer-based models with MIRACL dataset.
Our model improvement is mainly achieved through diverse data engineering techniques.
We secure 2nd place in the Surprise-Languages track with a score of 0.835 and 3rd place in the Known-Languages track with an average nDCG@10 score of 0.716 across the 16 known languages on the final leaderboard.
arXiv Detail & Related papers (2023-02-14T12:37:32Z) - BJTU-WeChat's Systems for the WMT22 Chat Translation Task [66.81525961469494]
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English-German.
Based on the Transformer, we apply several effective variants.
Our systems achieve 0.810 and 0.946 COMET scores.
arXiv Detail & Related papers (2022-11-28T02:35:04Z) - CAiRE in DialDoc21: Data Augmentation for Information-Seeking Dialogue
System [55.43871578056878]
In DialDoc21 competition, our system achieved 74.95 F1 score and 60.74 Exact Match score in subtask 1, and 37.72 SacreBLEU score in subtask 2.
arXiv Detail & Related papers (2021-06-07T11:40:55Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
We develop a system that automatically identifies whether an English Tweet related to the novel coronavirus (COVID-19) is informative or not.
Our final approach achieved an F1-score of 0.9037 and we were ranked sixth overall with F1-score as the evaluation criteria.
arXiv Detail & Related papers (2020-10-01T10:54:54Z) - LynyrdSkynyrd at WNUT-2020 Task 2: Semi-Supervised Learning for
Identification of Informative COVID-19 English Tweets [4.361526134899725]
We describe our system for WNUT-2020 shared task on the identification of informative COVID-19 English tweets.
Our system is an ensemble of various machine learning methods, leveraging both traditional feature-based classifiers as well as recent advances in pre-trained language models.
Our best performing model achieves an F1-score of 0.9179 on the provided validation set and 0.8805 on the blind test-set.
arXiv Detail & Related papers (2020-09-08T16:29:25Z) - UPB at SemEval-2020 Task 9: Identifying Sentiment in Code-Mixed Social
Media Texts using Transformers and Multi-Task Learning [1.7196613099537055]
We describe the systems developed by our team for SemEval-2020 Task 9.
We aim to cover two well-known code-mixed languages: Hindi-English and Spanish-English.
Our approach achieves promising performance on the Hindi-English task, with an average F1-score of 0.6850.
For the Spanish-English task, we obtained an average F1-score of 0.7064 ranking our team 17th out of 29 participants.
arXiv Detail & Related papers (2020-09-06T17:19:18Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
We build an offensive language detection system, which combines multi-task learning with BERT-based models.
Our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place.
arXiv Detail & Related papers (2020-04-28T11:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.