A Generative Model based Adversarial Security of Deep Learning and
Linear Classifier Models
- URL: http://arxiv.org/abs/2010.08546v1
- Date: Sat, 17 Oct 2020 17:18:17 GMT
- Title: A Generative Model based Adversarial Security of Deep Learning and
Linear Classifier Models
- Authors: erhat Ozgur Catak and Samed Sivaslioglu and Kevser Sahinbas
- Abstract summary: We have proposed a mitigation method for adversarial attacks against machine learning models with an autoencoder model.
The main idea behind adversarial attacks against machine learning models is to produce erroneous results by manipulating trained models.
We have also presented the performance of autoencoder models to various attack methods from deep neural networks to traditional algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning algorithms have been applied widely in
various fields such as health, transportation, and the autonomous car. With the
rapid developments of deep learning techniques, it is critical to take the
security concern into account for the application of the algorithms. While
machine learning offers significant advantages in terms of the application of
algorithms, the issue of security is ignored. Since it has many applications in
the real world, security is a vital part of the algorithms. In this paper, we
have proposed a mitigation method for adversarial attacks against machine
learning models with an autoencoder model that is one of the generative ones.
The main idea behind adversarial attacks against machine learning models is to
produce erroneous results by manipulating trained models. We have also
presented the performance of autoencoder models to various attack methods from
deep neural networks to traditional algorithms by using different methods such
as non-targeted and targeted attacks to multi-class logistic regression, a fast
gradient sign method, a targeted fast gradient sign method and a basic
iterative method attack to neural networks for the MNIST dataset.
Related papers
- Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - An integrated Auto Encoder-Block Switching defense approach to prevent
adversarial attacks [0.0]
The vulnerability of state-of-the-art Neural Networks to adversarial input samples has increased drastically.
This article proposes a defense algorithm that utilizes the combination of an auto-encoder and block-switching architecture.
arXiv Detail & Related papers (2022-03-11T10:58:24Z) - A Tutorial on Adversarial Learning Attacks and Countermeasures [0.0]
A machine learning model is capable of making highly accurate predictions without being explicitly programmed to do so.
adversarial learning attacks pose a serious security threat that greatly undermines further such systems.
This paper provides a detailed tutorial on the principles of adversarial learning, explains the different attack scenarios, and gives an in-depth insight into the state-of-art defense mechanisms against this rising threat.
arXiv Detail & Related papers (2022-02-21T17:14:45Z) - Automated Decision-based Adversarial Attacks [48.01183253407982]
We consider the practical and challenging decision-based black-box adversarial setting.
Under this setting, the attacker can only acquire the final classification labels by querying the target model.
We propose to automatically discover decision-based adversarial attack algorithms.
arXiv Detail & Related papers (2021-05-09T13:15:10Z) - Security Concerns on Machine Learning Solutions for 6G Networks in
mmWave Beam Prediction [0.0]
Security concerns on Artificial Intelligent (AI) models is typically ignored by the scientific community so far.
This paper proposes a mitigation method for adversarial attacks against proposed 6G machine learning models.
We also present the adversarial learning mitigation method's performance for 6G security in mmWave beam prediction application.
arXiv Detail & Related papers (2021-05-09T10:38:53Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Adversarial Machine Learning in Network Intrusion Detection Systems [6.18778092044887]
We study the nature of the adversarial problem in Network Intrusion Detection Systems.
We use evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation.
Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.
arXiv Detail & Related papers (2020-04-23T19:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.