Generating Fact Checking Summaries for Web Claims
- URL: http://arxiv.org/abs/2010.08570v1
- Date: Fri, 16 Oct 2020 18:10:47 GMT
- Title: Generating Fact Checking Summaries for Web Claims
- Authors: Rahul Mishra and Dhruv Gupta and Markus Leippold
- Abstract summary: We present a neural attention-based approach that learns to establish the correctness of textual claims based on evidence in the form of text documents.
We show the efficacy of our approach on datasets concerning political, healthcare, and environmental issues.
- Score: 8.980876474818153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SUMO, a neural attention-based approach that learns to establish
the correctness of textual claims based on evidence in the form of text
documents (e.g., news articles or Web documents). SUMO further generates an
extractive summary by presenting a diversified set of sentences from the
documents that explain its decision on the correctness of the textual claim.
Prior approaches to address the problem of fact checking and evidence
extraction have relied on simple concatenation of claim and document word
embeddings as an input to claim driven attention weight computation. This is
done so as to extract salient words and sentences from the documents that help
establish the correctness of the claim. However, this design of claim-driven
attention does not capture the contextual information in documents properly. We
improve on the prior art by using improved claim and title guided hierarchical
attention to model effective contextual cues. We show the efficacy of our
approach on datasets concerning political, healthcare, and environmental
issues.
Related papers
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - Contextual Document Embeddings [77.22328616983417]
We propose two complementary methods for contextualized document embeddings.
First, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss.
Second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation.
arXiv Detail & Related papers (2024-10-03T14:33:34Z) - Document-level Claim Extraction and Decontextualisation for Fact-Checking [11.994189446360433]
We propose a method for document-level claim extraction for fact-checking.
We first recast claim extraction as extractive summarization in order to identify central sentences from documents.
We then rewrite them to include necessary context from the originating document through sentence decontextualisation.
arXiv Detail & Related papers (2024-06-05T13:16:46Z) - ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs [13.608282497568108]
ClaimVer is a human-centric framework tailored to meet users' informational and verification needs.
It highlights each claim, verifies it against a trusted knowledge graph, and provides succinct, clear explanations for each claim prediction.
arXiv Detail & Related papers (2024-03-12T17:07:53Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
We propose an Efficient Context-aware model (ECASE) that fully exploits contextual information.
We introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information.
Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-08T08:47:10Z) - Give Me More Details: Improving Fact-Checking with Latent Retrieval [58.706972228039604]
Evidence plays a crucial role in automated fact-checking.
Existing fact-checking systems either assume the evidence sentences are given or use the search snippets returned by the search engine.
We propose to incorporate full text from source documents as evidence and introduce two enriched datasets.
arXiv Detail & Related papers (2023-05-25T15:01:19Z) - GERE: Generative Evidence Retrieval for Fact Verification [57.78768817972026]
We propose GERE, the first system that retrieves evidences in a generative fashion.
The experimental results on the FEVER dataset show that GERE achieves significant improvements over the state-of-the-art baselines.
arXiv Detail & Related papers (2022-04-12T03:49:35Z) - Assisting the Human Fact-Checkers: Detecting All Previously Fact-Checked
Claims in a Document [27.076320857009655]
Given an input document, it aims to detect all sentences that contain a claim that can be verified by some previously fact-checked claims.
The output is a re-ranked list of the document sentences, so that those that can be verified are ranked as high as possible.
Our analysis demonstrates the importance of modeling text similarity and stance, while also taking into account the veracity of the retrieved previously fact-checked claims.
arXiv Detail & Related papers (2021-09-14T13:46:52Z) - Graph-based Retrieval for Claim Verification over Cross-Document
Evidence [0.6853165736531939]
We conjecture that a graph-based approach can be beneficial to identify fragmented evidence.
We tested this hypothesis by building, over the whole corpus, a large graph that interconnects text portions by means of mentioned entities.
Our experiments show that leveraging on a graph structure is beneficial in identifying a reasonably small portion of passages related to a claim.
arXiv Detail & Related papers (2021-09-13T14:54:26Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
We focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer.
In detail, the input is a set of structured records and a reference text for describing another recordset.
The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference.
arXiv Detail & Related papers (2020-02-24T12:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.