Minimax Quasi-Bayesian estimation in sparse canonical correlation
analysis via a Rayleigh quotient function
- URL: http://arxiv.org/abs/2010.08627v3
- Date: Thu, 2 Nov 2023 20:19:50 GMT
- Title: Minimax Quasi-Bayesian estimation in sparse canonical correlation
analysis via a Rayleigh quotient function
- Authors: Qiuyun Zhu, Yves Atchade
- Abstract summary: Existing rate-optimal estimators for sparse canonical vectors have high computational cost.
We propose a quasi-Bayesian estimation procedure that achieves the minimax estimation rate.
We use the proposed methodology to maximally correlate clinical variables and proteomic data for better understanding the Covid-19 disease.
- Score: 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Canonical correlation analysis (CCA) is a popular statistical technique for
exploring relationships between datasets. In recent years, the estimation of
sparse canonical vectors has emerged as an important but challenging variant of
the CCA problem, with widespread applications. Unfortunately, existing
rate-optimal estimators for sparse canonical vectors have high computational
cost. We propose a quasi-Bayesian estimation procedure that not only achieves
the minimax estimation rate, but also is easy to compute by Markov Chain Monte
Carlo (MCMC). The method builds on Tan et al. (2018) and uses a re-scaled
Rayleigh quotient function as the quasi-log-likelihood. However, unlike Tan et
al. (2018), we adopt a Bayesian framework that combines this
quasi-log-likelihood with a spike-and-slab prior to regularize the inference
and promote sparsity. We investigate the empirical behavior of the proposed
method on both continuous and truncated data, and we demonstrate that it
outperforms several state-of-the-art methods. As an application, we use the
proposed methodology to maximally correlate clinical variables and proteomic
data for better understanding the Covid-19 disease.
Related papers
- A Framework for Analyzing Cross-correlators using Price's Theorem and
Piecewise-Linear Decomposition [5.094549132183797]
We present a general mathematical framework that allows us to analyze cross-correlators constructed using a mixture of piece-wise linear functions.
We show that some of the most promising cross-correlators are based on Huber's loss functions, margin-propagation (MP) functions, and the log-sum-exp (LSE) functions.
arXiv Detail & Related papers (2023-04-18T19:03:27Z) - Statistical Inference with Stochastic Gradient Methods under
$\phi$-mixing Data [9.77185962310918]
We propose a mini-batch SGD estimator for statistical inference when the data is $phi$-mixing.
The confidence intervals are constructed using an associated mini-batch SGD procedure.
The proposed method is memory-efficient and easy to implement in practice.
arXiv Detail & Related papers (2023-02-24T16:16:43Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - COCO Denoiser: Using Co-Coercivity for Variance Reduction in Stochastic
Convex Optimization [4.970364068620608]
We exploit convexity and L-smoothness to improve the noisy estimates outputted by the gradient oracle.
We show that increasing the number and proximity of the queried points leads to better gradient estimates.
We also apply COCO in vanilla settings by plugging it in existing algorithms, such as SGD, Adam or STRSAGA.
arXiv Detail & Related papers (2021-09-07T17:21:09Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.