Construction and Application of Teaching System Based on Crowdsourcing
Knowledge Graph
- URL: http://arxiv.org/abs/2010.08995v1
- Date: Sun, 18 Oct 2020 14:26:10 GMT
- Title: Construction and Application of Teaching System Based on Crowdsourcing
Knowledge Graph
- Authors: Jinta Weng, Ying Gao, Jing Qiu, Guozhu Ding, Huanqin Zheng
- Abstract summary: The knowledge graph constructed in a crowdsourcing manner requires many users to participate.
The personalized exercises recommendation model is used to formulate the personalized exercise by algorithm based on the knowledge graph.
- Score: 3.766443855077197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Through the combination of crowdsourcing knowledge graph and teaching system,
research methods to generate knowledge graph and its applications. Using two
crowdsourcing approaches, crowdsourcing task distribution and reverse captcha
generation, to construct knowledge graph in the field of teaching system.
Generating a complete hierarchical knowledge graph of the teaching domain by
nodes of school, student, teacher, course, knowledge point and exercise type.
The knowledge graph constructed in a crowdsourcing manner requires many users
to participate collaboratively with fully consideration of teachers' guidance
and users' mobilization issues. Based on the three subgraphs of knowledge
graph, prominent teacher, student learning situation and suitable learning
route could be visualized. Personalized exercises recommendation model is used
to formulate the personalized exercise by algorithm based on the knowledge
graph. Collaborative creation model is developed to realize the crowdsourcing
construction mechanism. Though unfamiliarity with the learning mode of
knowledge graph and learners' less attention to the knowledge structure, system
based on Crowdsourcing Knowledge Graph can still get high acceptance around
students and teachers
Related papers
- Knowledge Graph Extension by Entity Type Recognition [2.8231106019727195]
We propose a novel knowledge graph extension framework based on entity type recognition.
The framework aims to achieve high-quality knowledge extraction by aligning the schemas and entities across different knowledge graphs.
arXiv Detail & Related papers (2024-05-03T19:55:03Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
We formulate a new knowledge distillation framework to transfer the knowledge from self-supervised pre-trained models to any other student network.
Inspired by the spirit of instance discrimination in self-supervised learning, we model the instance-instance relations by a graph formulation in the feature embedding space.
Our distillation scheme can be flexibly applied to transfer the self-supervised knowledge to enhance representation learning on various student networks.
arXiv Detail & Related papers (2022-11-23T19:27:48Z) - A Survey on Visual Transfer Learning using Knowledge Graphs [0.8701566919381223]
This survey focuses on visual transfer learning approaches using knowledge graphs (KGs)
KGs can represent auxiliary knowledge either in an underlying graph-structured schema or in a vector-based knowledge graph embedding.
We provide a broad overview of knowledge graph embedding methods and describe several joint training objectives suitable to combine them with high dimensional visual embeddings.
arXiv Detail & Related papers (2022-01-27T20:19:55Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
We propose Knowledge-aware Conditional Attention Networks (KCAN) to incorporate knowledge graph into a recommender system.
We use a knowledge-aware attention propagation manner to obtain the node representation first, which captures the global semantic similarity on the user-item network and the knowledge graph.
Then, by applying a conditional attention aggregation on the subgraph, we refine the knowledge graph to obtain target-specific node representations.
arXiv Detail & Related papers (2021-11-03T09:40:43Z) - Attentional Graph Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous View [72.98388321383989]
Massive open online courses ( MOOCs) provide a large-scale and open-access learning opportunity for students to grasp the knowledge.
To attract students' interest, the recommendation system is applied by MOOCs providers to recommend courses to students.
We propose an end-to-end graph neural network-based approach calledAttentionalHeterogeneous Graph Convolutional Deep Knowledge Recommender(ACKRec) for knowledge concept recommendation in MOOCs.
arXiv Detail & Related papers (2020-06-23T18:28:08Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Knowledge Graphs [43.06435841693428]
We motivate and contrast various graph-based data models and query languages that are used for knowledge graphs.
We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques.
We conclude with high-level future research directions for knowledge graphs.
arXiv Detail & Related papers (2020-03-04T20:20:32Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
We review research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications.
For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed.
We explore several emerging topics, including meta learning, commonsense reasoning, and temporal knowledge graphs.
arXiv Detail & Related papers (2020-02-02T13:17:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.