Explaining and Improving Model Behavior with k Nearest Neighbor
Representations
- URL: http://arxiv.org/abs/2010.09030v1
- Date: Sun, 18 Oct 2020 16:55:25 GMT
- Title: Explaining and Improving Model Behavior with k Nearest Neighbor
Representations
- Authors: Nazneen Fatema Rajani, Ben Krause, Wengpeng Yin, Tong Niu, Richard
Socher, Caiming Xiong
- Abstract summary: We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
- Score: 107.24850861390196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability techniques in NLP have mainly focused on understanding
individual predictions using attention visualization or gradient-based saliency
maps over tokens. We propose using k nearest neighbor (kNN) representations to
identify training examples responsible for a model's predictions and obtain a
corpus-level understanding of the model's behavior. Apart from
interpretability, we show that kNN representations are effective at uncovering
learned spurious associations, identifying mislabeled examples, and improving
the fine-tuned model's performance. We focus on Natural Language Inference
(NLI) as a case study and experiment with multiple datasets. Our method deploys
backoff to kNN for BERT and RoBERTa on examples with low model confidence
without any update to the model parameters. Our results indicate that the kNN
approach makes the finetuned model more robust to adversarial inputs.
Related papers
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
Post-hoc interpretability methods fail to capture the models' decision-making process fully.
Our paper introduces DISCO, a novel method for discovering global, rule-based explanations.
DISCO supports interactive explanations, enabling human inspectors to distinguish spurious causes in the rule-based output.
arXiv Detail & Related papers (2024-11-07T12:12:44Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Identifying and Mitigating Spurious Correlations for Improving
Robustness in NLP Models [19.21465581259624]
Many problems can be attributed to models exploiting spurious correlations, or shortcuts between the training data and the task labels.
In this paper, we aim to automatically identify such spurious correlations in NLP models at scale.
We show that our proposed method can effectively and efficiently identify a scalable set of "shortcuts", and mitigating these leads to more robust models in multiple applications.
arXiv Detail & Related papers (2021-10-14T21:40:03Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
We develop neural models that possess an interpretable inference process for dependency parsing.
Our models adopt instance-based inference, where dependency edges are extracted and labeled by comparing them to edges in a training set.
arXiv Detail & Related papers (2021-09-28T05:30:52Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.