Unsupervised Neural Machine Translation for Low-Resource Domains via
Meta-Learning
- URL: http://arxiv.org/abs/2010.09046v2
- Date: Fri, 7 May 2021 14:14:06 GMT
- Title: Unsupervised Neural Machine Translation for Low-Resource Domains via
Meta-Learning
- Authors: Cheonbok Park, Yunwon Tae, Taehee Kim, Soyoung Yang, Mohammad Azam
Khan, Eunjeong Park and Jaegul Choo
- Abstract summary: We present a novel meta-learning algorithm for unsupervised neural machine translation (UNMT)
We train the model to adapt to another domain by utilizing only a small amount of training data.
Our model surpasses a transfer learning-based approach by up to 2-4 BLEU scores.
- Score: 27.86606560170401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised machine translation, which utilizes unpaired monolingual corpora
as training data, has achieved comparable performance against supervised
machine translation. However, it still suffers from data-scarce domains. To
address this issue, this paper presents a novel meta-learning algorithm for
unsupervised neural machine translation (UNMT) that trains the model to adapt
to another domain by utilizing only a small amount of training data. We assume
that domain-general knowledge is a significant factor in handling data-scarce
domains. Hence, we extend the meta-learning algorithm, which utilizes knowledge
learned from high-resource domains, to boost the performance of low-resource
UNMT. Our model surpasses a transfer learning-based approach by up to 2-4 BLEU
scores. Extensive experimental results show that our proposed algorithm is
pertinent for fast adaptation and consistently outperforms other baseline
models.
Related papers
- Semi-supervised Neural Machine Translation with Consistency
Regularization for Low-Resource Languages [3.475371300689165]
This paper presents a simple yet effective method to tackle the problem for low-resource languages by augmenting high-quality sentence pairs and training NMT models in a semi-supervised manner.
Specifically, our approach combines the cross-entropy loss for supervised learning with KL Divergence for unsupervised fashion given pseudo and augmented target sentences.
Experimental results show that our approach significantly improves NMT baselines, especially on low-resource datasets with 0.46--2.03 BLEU scores.
arXiv Detail & Related papers (2023-04-02T15:24:08Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - DaLC: Domain Adaptation Learning Curve Prediction for Neural Machine
Translation [10.03007605098947]
Domain Adaptation (DA) of Neural Machine Translation (NMT) model often relies on a pre-trained general NMT model which is adapted to the new domain on a sample of in-domain parallel data.
We propose a Domain Learning Curve prediction (DaLC) model that predicts prospective DA performance based on in-domain monolingual samples in the source language.
arXiv Detail & Related papers (2022-04-20T06:57:48Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Non-Parametric Unsupervised Domain Adaptation for Neural Machine
Translation [61.27321597981737]
$k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor retrieval.
We propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for $k$-nearest-neighbor retrieval.
arXiv Detail & Related papers (2021-09-14T11:50:01Z) - Meta-Curriculum Learning for Domain Adaptation in Neural Machine
Translation [19.973201669851626]
We propose a novel meta-curriculum learning for domain adaptation in neural machine translation (NMT)
During meta-training, the NMT first learns the similar curricula from each domain to avoid falling into a bad local optimum early.
We show that meta-curriculum learning can improve the translation performance of both familiar and unfamiliar domains.
arXiv Detail & Related papers (2021-03-03T08:58:39Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z) - Dynamic Data Selection and Weighting for Iterative Back-Translation [116.14378571769045]
We propose a curriculum learning strategy for iterative back-translation models.
We evaluate our models on domain adaptation, low-resource, and high-resource MT settings.
Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.
arXiv Detail & Related papers (2020-04-07T19:49:58Z) - A Simple Baseline to Semi-Supervised Domain Adaptation for Machine
Translation [73.3550140511458]
State-of-the-art neural machine translation (NMT) systems are data-hungry and perform poorly on new domains with no supervised data.
We propose a simple but effect approach to the semi-supervised domain adaptation scenario of NMT.
This approach iteratively trains a Transformer-based NMT model via three training objectives: language modeling, back-translation, and supervised translation.
arXiv Detail & Related papers (2020-01-22T16:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.