Mycorrhiza: Genotype Assignment usingPhylogenetic Networks
- URL: http://arxiv.org/abs/2010.09483v1
- Date: Wed, 14 Oct 2020 02:36:27 GMT
- Title: Mycorrhiza: Genotype Assignment usingPhylogenetic Networks
- Authors: Jeremy Georges-Filteau, Richard C. Hamelin and Mathieu Blanchette
- Abstract summary: We introduce Mycorrhiza, a machine learning approach for the genotype assignment problem.
Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples.
Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium.
- Score: 2.286041284499166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation The genotype assignment problem consists of predicting, from the
genotype of an individual, which of a known set of populations it originated
from. The problem arises in a variety of contexts, including wildlife
forensics, invasive species detection and biodiversity monitoring. Existing
approaches perform well under ideal conditions but are sensitive to a variety
of common violations of the assumptions they rely on. Results In this article,
we introduce Mycorrhiza, a machine learning approach for the genotype
assignment problem. Our algorithm makes use of phylogenetic networks to
engineer features that encode the evolutionary relationships among samples.
Those features are then used as input to a Random Forests classifier. The
classification accuracy was assessed on multiple published empirical SNP,
microsatellite or consensus sequence datasets with wide ranges of size,
geographical distribution and population structure and on simulated datasets.
It compared favorably against widely used assessment tests or mixture analysis
methods such as STRUCTURE and Admixture, and against another machine-learning
based approach using principal component analysis for dimensionality reduction.
Mycorrhiza yields particularly significant gains on datasets with a large
average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium.
Moreover, the phylogenetic network approach estimates mixture proportions with
good accuracy.
Related papers
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Predicting loss-of-function impact of genetic mutations: a machine
learning approach [0.0]
This paper aims to train machine learning models on the attributes of a genetic mutation to predict LoFtool scores.
These attributes included, but were not limited to, the position of a mutation on a chromosome, changes in amino acids, and changes in codons caused by the mutation.
Models were evaluated using five-fold cross-validated averages of r-squared, mean squared error, root mean squared error, mean absolute error, and explained variance.
arXiv Detail & Related papers (2024-01-26T19:27:38Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - Graph Coloring via Neural Networks for Haplotype Assembly and Viral
Quasispecies Reconstruction [8.828330486848753]
We develop a new method, called NeurHap, that combines graph representation learning with optimization.
Our experiments demonstrate substantially better performance of NeurHap in real and synthetic datasets compared to competing approaches.
arXiv Detail & Related papers (2022-10-21T12:53:09Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We propose a new approach for dealing with high-dimensional binary classification problems that combines ideas from regularization and ensembling.
We demonstrate the good performance of our method in terms of prediction accuracy and identification of key biomarkers using several medical datasets involving common diseases such as cancer, multiple sclerosis and psoriasis.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - Object-Attribute Biclustering for Elimination of Missing Genotypes in
Ischemic Stroke Genome-Wide Data [2.0236506875465863]
Missing genotypes can affect the efficacy of machine learning approaches to identify the risk genetic variants of common diseases and traits.
The problem occurs when genotypic data are collected from different experiments with different DNA microarrays, each being characterised by its pattern of uncalled (missing) genotypes.
We use well-developed notions of object-attribute biclusters and formal concepts that correspond to dense subrelations in the binary relation.
arXiv Detail & Related papers (2020-10-22T12:27:43Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.